GINA

DIFFICULT-TO-TREAT & SEVERE ASTHMA
in adolescent and adult patients
Diagnosis and Management

A GINA Pocket Guide
For Health Professionals

V3.0 April 2021

© Global Initiative for Asthma, 2021 www.ginasthma.org
Abbreviations used in this Pocket Guide

+++, ++, +: Plus signs indicate the strength of an association
ABPA: Allergic bronchopulmonary aspergillosis
AERD: Aspirin-exacerbated respiratory disease
ANCA: Antineutrophil cytoplasmic antibody
BNP: B-type natriuretic peptide
CBC: Complete blood count (also known as FBC, full blood count)
COPD: Chronic obstructive pulmonary disease
CRP: C-reactive protein
CT/HRCT: Computerized tomography; high resolution computerized tomography
CXR: Chest X-ray
DPI: Dry powder inhaler
DLCO: Diffusing capacity in the lung for carbon monoxide
EGPA: Eosinophilic granulomatosis with polyangitis
FeNO: Fraction of exhaled nitric oxide
FEV₁: Forced expiratory volume in 1 second
FVC: Forced vital capacity
GERD: Gastro-esophageal reflux disease
GP: General practitioner; primary care physician
ICS: Inhaled corticosteroids
Ig: Immunoglobulin
IL: Interleukin
IM: Intramuscular
IV: Intravenous
LD: Check local eligibility criteria for specific biologic therapies as these may vary from those listed
LABA: Long-acting beta2-agonist
LMI/LTRA: Leukotrienes modifier/leukotriene receptor antagonist
NSAID: Non-steroidal anti-inflammatory drug
OCS: Oral corticosteroids
OSA: Obstructive sleep apnea
pMDI: Pressurized metered dose inhaler
RCT: Randomized controlled trial
SABA: Short-acting beta2-agonists
SC: Subcutaneous
VCD: Vocal cord dysfunction (now part of inducible laryngeal obstruction)

Table of Contents

Abbreviations used in this Pocket Guide...2
Goal of this Pocket Guide...4
How to use this Pocket Guide...5
Definitions: uncontrolled, difficult-to-treat and severe asthma.........................6
Prevalence: how many people have severe asthma?......................................6
Importance: the impact of severe asthma..7
Severe asthma decision tree: diagnosis and management..............................8
Investigate and manage adult and adolescent patients with difficult-to-treat asthma
GP OR SPECIALIST CARE

<table>
<thead>
<tr>
<th>Decision Tree</th>
<th>Detail Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Confirm the diagnosis (asthma or differential diagnoses)</td>
</tr>
<tr>
<td>2</td>
<td>Look for factors contributing to symptoms, exacerbations and poor quality of life</td>
</tr>
<tr>
<td>3</td>
<td>Optimize management</td>
</tr>
<tr>
<td>4</td>
<td>Review response after ~3-6 months</td>
</tr>
</tbody>
</table>

Assess and treat severe asthma phenotypes

SPECIALIST CARE; SEVERE ASTHMA CLINIC IF AVAILABLE

<table>
<thead>
<tr>
<th>Decision Tree</th>
<th>Detail Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Assess the severe asthma phenotype and factors contributing to symptoms, quality of life and exacerbations</td>
</tr>
<tr>
<td>6a</td>
<td>Consider non-biologic treatments</td>
</tr>
<tr>
<td>6b</td>
<td>Consider add-on biologic Type 2 targeted treatments</td>
</tr>
</tbody>
</table>

Monitor / Manage severe asthma treatment

SPECIALIST AND PRIMARY CARE IN COLLABORATION

<table>
<thead>
<tr>
<th>Decision Tree</th>
<th>Detail Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Review response</td>
</tr>
<tr>
<td>8</td>
<td>Continue to optimize management as in section 3</td>
</tr>
</tbody>
</table>

Glossary of asthma medication classes...31
Acknowledgements, GINA publications, other resources for severe asthma........34
References..35
Goal of this Pocket Guide

The goal of this Pocket Guide is to provide a practical summary for health professionals about how to identify, assess and manage difficult-to-treat and severe asthma in adolescents and adults. It is intended for use by general practitioners (GPs, primary care physicians), pulmonary specialists and other health professionals involved in the management of people with asthma.

More details and practical tools for asthma management in clinical practice, particularly for primary care, can be found in the GINA 2021 strategy report and appendix and the online GINA toolbox, available from www.ginasthma.org.

How was the Pocket Guide developed?

The recommendations in this Pocket Guide were based on evidence where good quality systematic reviews or randomized controlled trials or, lacking these, robust observational data, were available, and on consensus by expert clinicians and researchers, where not.

Development of the Pocket Guide and decision tree included extensive collaboration with experts in human-centered design to enhance the utility of these resources for end-users. This means translating existing high level flowcharts and text-based information to a more detailed visual format, and applying information architecture and diagramming principles.

This GINA Pocket Guide is intended as a practical guide for health professionals about the assessment and management of difficult-to-treat and severe asthma. It does NOT contain all of the information required for managing asthma. The Pocket Guide should be used in conjunction with the full GINA 2021 report. Health professionals should also use their own clinical judgment and take into account any local restrictions or payer requirements. GINA cannot be held liable or responsible for inappropriate healthcare associated with the use of this document, including any use which is not in accordance with applicable local or national regulations or guidelines.

How to use this Pocket Guide

The Table of Contents (page 3) summarizes the overall steps involved in assessing and treating an adult or adolescent who presents with difficult-to-treat asthma (see definitions on page 6).

A clinical decision tree is found on pages 8 to 15, providing brief information about what should be considered in each phase. The decision tree is divided into three broad areas:

• Sections 1-4 (green) are for use in primary care and/or specialist care
• Sections 5-7 (blue) are mainly relevant to respiratory specialists
• Section 8 (brown) is about maintaining ongoing collaborative care between the patient, GP, specialist and other health professionals

More detailed information about each of the numbered sections of the decision tree follows on pages 16 to 30.

Key references and additional resources are found at the end of the Pocket Guide, starting on page 31.
Definitions: uncontrolled, difficult-to-treat and severe asthma

Understanding the definitions of difficult-to-treat and severe asthma starts with the concept of uncontrolled asthma. **Uncontrolled asthma** includes one or both of the following:

- Poor symptom control (frequent symptoms or reliever use, activity limited by asthma, night waking due to asthma)
- Frequent exacerbations (≥2/year) requiring oral corticosteroids (OCS), or serious exacerbations (≥1/year) requiring hospitalization

Difficult-to-treat asthma is asthma that is uncontrolled despite prescribing of medium or high dose inhaled corticosteroids (ICS) with a second controller (usually LABA) or with maintenance OCS, or that requires high dose treatment to maintain good symptom control and reduce the risk of exacerbations. It does not mean a ‘difficult patient’. In many cases, asthma may appear to be difficult-to-treat because of modifiable factors such as incorrect inhaler technique, poor adherence, smoking or comorbidities, or because the diagnosis is incorrect.

Severe asthma is a subset of difficult-to-treat asthma (Box 1). It means asthma that is uncontrolled despite adherence with maximal optimized high dose ICS-LABA and treatment of contributory factors, or that worsens when high dose treatment is decreased. At present, therefore, ‘severe asthma’ is a retrospective label. It is sometimes called ‘severe refractory asthma’ since it is defined by being relatively refractory to high dose inhaled therapy. However, with the advent of biologic therapies, the word ‘refractory’ is no longer appropriate.

Asthma is not classified as severe if it markedly improves when contributory factors such as incorrect inhaler technique, poor adherence, smoking or comorbidities, or because the diagnosis is incorrect.

Prevalence: how many people have severe asthma?

Box 1. What proportion of adults have difficult-to-treat or severe asthma?

- **24%** high intensity treatment
 - high dose ICS-LABA
 - or medium dose ICS-LABA +OCS

- **17%** difficult-to-treat asthma
 - high intensity treatment
 - poor symptom control

- **3.7%** severe asthma
 - high intensity treatment
 - poor symptom control
 - good adherence and inhaler technique

These data are from a Dutch population survey of people ≥18 years with asthma.

Importance: the impact of severe asthma

The patient perspective

Patients with severe asthma experience a heavy burden of symptoms, exacerbations and medication side-effects. Frequent shortness of breath, wheeze, chest tightness and cough interfere with day-to-day living, sleeping, and physical activity, and patients often have frightening or unpredictable exacerbations (also called attacks or severe flare-ups).

Medication side-effects are particularly common and problematic with OCS, which in the past were a mainstay of treatment for severe asthma. Adverse effects of long-term OCS include obesity, diabetes, osteoporosis, cataracts, hypertension and adrenal suppression; psychological side-effects such as depression and anxiety are particularly concerning for patients. Even short-term use of OCS is associated with sleep disturbance, and increased risk of infection, fracture and thromboembolism. Strategies to minimize need for OCS are therefore a high priority.

Severe asthma often interferes with family, social and working life, limits career choices and vacation options, and affects emotional and mental health. Patients with severe asthma often feel alone and misunderstood, as their experience is so different from that of most people with asthma.

Adolescents with severe asthma

The teenage years are a time of great psychological and physiological development which can impact on asthma management. It is vital to ensure that the young person has a good understanding of their condition and treatment and appropriate knowledge to enable supported self-management. The process of transition from pediatric to adult care should help support the young person in gaining greater autonomy and responsibility for their own health and wellbeing. Severe asthma may improve over 3 years in approximately 30% of male and female adolescents, with the only predictor being higher baseline blood eosinophils. Studies with longer follow-up time are needed.

Healthcare utilization and costs

Severe asthma has very high healthcare costs due to medications, physician visits, hospitalizations, and the costs of OCS side-effects. In a UK study, healthcare costs per patient were higher than for type 2 diabetes, stroke, or chronic obstructive pulmonary disease (COPD). In a Canadian study, severe uncontrolled asthma was estimated to account for more than 60% of asthma costs.

Patients with severe asthma and their families also bear a significant financial burden, not only for medical care and medications, but also through lost earnings and career choices.
Severe asthma decision tree: diagnosis and management

GP OR SPECIALIST CARE

Investigate and manage adult and adolescent patients with difficult-to-treat asthma

Consider referring to specialist or severe asthma clinic at any stage

DIAGNOSIS: “Difficult-to-treat asthma”

1. Confirm the diagnosis (asthma/differential diagnoses)

2. Look for factors contributing to symptoms, exacerbations and poor quality of life:
 - Incorrect inhaler technique
 - Suboptimal adherence
 - Comorbidities including obesity, GERD, chronic rhinosinusitis, OSA
 - Modifiable risk factors and triggers at home or work, including smoking, environmental exposures, allergen exposure (if sensitized on skin prick testing or specific IgE); medications such as beta-blockers and NSAIDs
 - Overuse of SABA relievers
 - Medication side effects
 - Anxiety, depression and social difficulties

3. Optimize management, including:
 - Asthma education
 - Optimize treatment (e.g. check and correct inhaler technique and adherence; switch to ICS-formoterol maintenance and reliever therapy, if available)
 - Treat comorbidities and modifiable risk factors
 - Consider non-biologic add-on therapy (e.g. LABA, LAMA, ICS/LTRA, if not used)
 - Consider non-pharmacological interventions (e.g. smoking cessation, exercise, weight loss, mucus clearance, influenza vaccination)
 - Consider trial of high dose ICS-LABA, if not used

4. Review response after ~3-6 months

Is asthma still uncontrolled?

Does asthma become uncontrolled when treatment is stepped down?

Consider stepping down treatment, OCS first (if used.)

Continue optimizing management

D I A G N O S I S : “Severe asthma”

If not done by now, refer to a specialist, if possible.

Restore previous dose

For more details -> pg 16-17

For more details -> pg 18

For more details -> pg 19
Assess and treat severe asthma phenotypes

Continue to optimize management as in section 3 (including inhaler technique, adherence, comorbidities)

5. Assess the severe asthma phenotype and factors contributing to symptoms, quality of life and exacerbations

6a. Consider non-biologic treatments

Is add-on Type 2 biologic therapy available/affordable?

- Yes
- No

If add-on Type 2 biologic therapy is NOT available/affordable:
- Consider higher dose ICS, if not used
- Consider non-biologic add-on therapy (e.g. LABA, LAMA, LM/LTRA, azithromycin)
- Consider add-on low dose OCS, but implement strategies to minimize side-effects
- Stop ineffective add-on therapies

If no evidence of Type 2 inflammation:
- Review the basics: differential diagnosis, inhaler technique, adherence, comorbidities, side-effects
- Avoid exposures (tobacco smoke, allergens, irritants)
- Consider investigations (if available and not done)
 - Sputum induction
 - High resolution chest CT
 - Bronchoscopy for alternative/additional diagnoses
- Consider add-on treatments
 - Trial of LAMA or azithromycin (if not already tried)
 - Consider add-on low dose OCS, but implement strategies to minimize side-effects
 - Stop ineffective add-on therapies
- Consider bronchial thermoplasty (+ registry)

Type 2 inflammation

Could patient have Type 2 airway inflammation?

- Blood eosinophils ≥150/µl and/or
- FeNO ≥20 ppb and/or
- Sputum eosinophils ≥2%, and/or
- Asthma is clinically allergen-driven and/or
- Need for maintenance OCS
 (Repeat blood eosinophils and FeNO up to 3x, on lowest possible OCS dose)

Note: these are not the criteria for add-on biologic therapy (see 6b)

Investigate for comorbidities/differential diagnoses and treat/refer as appropriate
- Consider: CBC, CRP, IgG, IgA, IgM, IgE, fungal precipitins; CXR and/or HRCT chest; DLCO
- Skin prick testing or specific IgE for relevant allergens, if not already done
- Other directed testing (e.g. ANCA, CT sinuses, BNP, echocardiogram) based on clinical suspicion

Consider need for social/psychological support

Involve multidisciplinary team care (if available)

Invite patient to enroll in registry (if available) or clinical trial (if appropriate)
Consider *add-on biologic* Type 2 targeted treatments

Anti-IgE

Is the patient eligible for anti-IgE for severe allergic asthma?
- Sensitization on skin prick testing or specific IgE
- Total serum IgE and weight within dosage range
- Exacerbations in last year

What factors may predict good asthma response to anti-IgE?
- Blood eosinophils \(\geq 260/\mu l \)
- FeNO \(\geq 20 \) ppb
- Allergen-driven symptoms
- Childhood-onset asthma

Choose one if eligible; trial for at least 4 months and assess response

Anti-IL5 / Anti-IL5R

Is the patient eligible for anti-IL5 / anti-IL5R for severe eosinophilic asthma?
- Exacerbations in last year
- Blood eosinophils, e.g. \(\geq 150/\mu l \) or \(\geq 300/\mu l \)

What factors may predict good asthma response to anti-IL5/5R?
- Higher blood eosinophils
- More exacerbations in previous year
- Adult-onset of asthma
- Nasal polyposis

Choose one if eligible; trial for at least 4 months and assess response

Anti-IL4R

Is the patient eligible for anti-IL4R for severe eosinophilic/Type 2 asthma?
- Exacerbations in last year
- Blood eosinophils \(\geq 150/\mu l \) or FeNO \(\geq 25 \) ppb
- or because of need for maintenance OCS?

What factors may predict good asthma response to anti-IL4R?
- Higher blood eosinophils
- Higher FeNO

Choose one if eligible; trial for at least 4 months and assess response

Check local eligibility criteria for specific biologic therapies as these may vary from those listed
Monitor / Manage severe asthma treatment

Continue to optimize management

8 Continue to optimize management as in section 3, including:

- Inhaler technique
- Adherence
- Comorbidity management
- Patients’ social/emotional needs
- Two-way communication with GP for ongoing care

7 Review response

- Asthma: symptom control, exacerbations, lung function
- Type 2 comorbidities e.g. nasal polyposis, atopic dermatitis
- Medications: treatment intensity, side-effects, affordability
- Patient satisfaction

If good response to Type 2-targeted therapy

- Re-evaluate the patient every 3-6 months
- For oral treatments: consider decreasing/stopping OCS first, then stopping other add-on medication
- For inhaled treatments: consider decreasing after 3-6 months; continue at least moderate dose ICS
- Re-evaluate need for ongoing biologic therapy
- Order of reduction of treatments based on observed benefit, potential side-effects, cost and patient preference

If no good response to Type 2-targeted therapy

- Stop the biologic therapy
- Review the basics: differential diagnosis, inhaler technique, adherence, comorbidities, side-effects, emotional support
- Consider high resolution chest CT (if not done)
- Reassess phenotype and treatment options
 - Induced sputum (if available)
 - Consider add-on azithromycin
 - Consider add-on low dose OCS, but implement strategies to minimize side-effects
 - Consider bronchoscopy for alternative/additional diagnoses
 - Consider bronchial thermoplasty (+ registry)
- Stop ineffective add-on therapies
- Do not stop ICS

Notes:

- Induced sputum (if available)
- Consider add-on azithromycin
- Consider add-on low dose OCS, but implement strategies to minimize side-effects
- Consider bronchoscopy for alternative/additional diagnoses
- Consider bronchial thermoplasty (+ registry)
- Stop ineffective add-on therapies
- Do not stop ICS
IN DETAIL
Investigate and manage adult and adolescent patients with difficult-to-treat asthma

Care by GP or SPECIALIST

1 Confirm the diagnosis (asthma or differential diagnoses)

Difficult-to-treat asthma is defined by the presence of persistent symptoms and/or exacerbations despite prescribing of medium or high dose ICS with another controller such as LABA, or OCS, or that requires high dose ICS-LABA to maintain good control and prevent exacerbations. It does not mean a ‘difficult patient’.

Consider referral to a specialist or severe asthma clinic at any stage, particularly if:

• There is difficulty confirming the diagnosis of asthma
• Patient has frequent urgent healthcare utilization
• Patient needs frequent or maintenance OCS
• Occupational asthma is suspected
• The patient has food allergy or anaphylaxis, as this increases the risk of death
• Symptoms are suggestive of infective or cardiac cause
• Symptoms are suggestive of complications such as bronchiectasis
• Presence of multiple comorbidities

Are the symptoms due to asthma?

Perform a careful history and physical examination to identify whether symptoms are typical of asthma, or are more likely due to an alternative diagnosis or comorbidity. Investigate according to clinical suspicion.

• Dyspnea: COPD, obesity, cardiac disease, deconditioning
• Cough: inducible laryngeal obstruction (also called vocal cord dysfunction, VCD), upper airway cough syndrome (also called post-nasal drip), gastro-esophageal reflux disease (GERD), bronchiectasis, ACE inhibitors
• Wheeze: obesity, COPD, tracheobronchomalacia, VCD

How can the diagnosis of asthma be confirmed?

Perform spirometry before and after bronchodilator to assess baseline lung function and seek objective evidence of variable expiratory airflow limitation. If initial reversibility testing is negative (<200mL or <12% increase in FEV1), consider repeating when symptomatic. Check full flow-volume curve to assess for upper airway obstruction. If spirometry is normal or is not available, provide the patient with a peak flow diary for assessing variability; consider bronchial provocation testing if patient is able to withhold bronchodilators (short-acting beta2-agonist (SABA) for >6 hours, LABA for up to 2 days depending on duration of action).

See GINA 2021 for details about diagnostic testing, and for other objective investigations.

Airflow limitation may be persistent in patients with long-standing asthma, due to remodeling of the airway walls, or limited lung development in childhood. It is important to document lung function when the diagnosis of asthma is first made. Specialist advice should be obtained if the history is suggestive of asthma but the diagnosis cannot be confirmed by spirometry.

2 Look for factors contributing to symptoms and exacerbations

Systematically consider factors that may be contributing to uncontrolled symptoms or exacerbations, or poor quality of life, and that can be treated. The most important modifiable factors include:

• Incorrect inhaler technique (seen in up to 80% patients): ask the patient to show you how they use their inhaler; compare with a checklist or video
• Suboptimal adherence (up to 75% asthma patients): ask empathically about frequency of use (e.g. ‘Many patients don’t use their inhaler as prescribed. In the last 4 weeks, how many days a week have you been taking it – not at all, 1 day a week, 2, 3 or more?’ or, ‘Do you find it easier to remember your inhaler in the morning or the evening?’ (see GINA report Box 3-13). Ask about barriers to medication use, including cost, and concerns about necessity or side-effects. Check dates on inhalers and view dispensing data, if available.
• Comorbidities: review history and examination for comorbidities that can contribute to respiratory symptoms, exacerbations, or poor quality of life. These include anxiety and depression, obesity, deconditioning, chronic rhinosinusitis, inducible laryngeal obstruction (often referred to as VCD), GERD, COPD, obstructive sleep apnea, bronchiectasis, cardiac disease, and kyphosis due to osteoporosis. Investigate according to clinical suspicion.
• Modifiable risk factors and triggers: identify factors that increase the risk of exacerbations, e.g. smoking, environmental tobacco exposure, other environmental exposures at home or work including allergens (if sensitized), indoor and outdoor air pollution, molds and noxious chemicals, and medications such as beta-blockers or non-steroid anti-inflammatory drugs (NSAIDs). For allergens, check for sensitization using skin prick testing or specific IgE.
• Regular or over-use of SABAs causes beta-receptor down-regulation and reduction in response, leading in turn to greater use. Overuse may also be habitual. Dispensing of ≥3 SABA canisters per year (average use more than daily) is associated with increased risk of ED visit or hospitalization independent of severity, and dispensing of ≥12 canisters per year (one a month) with substantially increased risk of death. Risks are higher with nebulized SABA.
• Anxiety, depression and social and economic problems: these are very common in patients with difficult-to-treat asthma and contribute to symptoms, impaired quality of life, and poor adherence.
4 Review response after 3–6 months

Schedule a review visit to assess the response to the above interventions. Timing of the review visit depends on clinical urgency and what changes to treatment have been made.

When assessing the response to treatment, specifically review:

- **Symptom control**: symptom frequency, reliever use, night waking due to asthma, activity limitation
- **Exacerbations since previous visit**, and how they were managed
- **Medication side-effects**
- **Inhaler technique and adherence**
- **Lung function**
- **Patient satisfaction and concerns**

→ Is asthma still uncontrolled, despite optimized therapy?

YES: if asthma is still uncontrolled, the diagnosis of severe asthma has been confirmed. If not done by now, refer the patient to a specialist or severe asthma clinic if possible.

NO: if asthma is now well-controlled, consider stepping down treatment. Start by decreasing/ceasing OCS first (if used), then remove other add-on therapy, then decrease ICS dose (do not stop ICS). See GINA 2021 Box 3-7 for how to gradually down-titrate treatment intensity.

→ Does asthma become uncontrolled when treatment is stepped down?

YES: if asthma symptoms become uncontrolled or an exacerbation occurs when high dose treatment is stepped down, the diagnosis of severe asthma has been confirmed. Restore the patient's previous dose to regain good asthma control, and refer to a specialist or severe asthma clinic if possible, if not done already.

NO: if symptoms and exacerbations remain well-controlled despite treatment being stepped down, the patient does not have severe asthma. Continue optimizing management.
ASSess and treat severe asthma phenotypes

Care by SPECIALIST, SEVERE ASTHMA CLINIC IF AVAILABLE

5 Assess the severe asthma phenotype and other contributors

Further assessment and management should be by a specialist, preferably in a multidisciplinary severe asthma clinic if available. The team may include a certified asthma educator and health professionals from fields such as speech pathology, ear nose and throat (ENT), social work and mental health.

Assessment includes:
- Assessment of the patient’s inflammatory phenotype: Type 2 or non-Type 2?
- More detailed assessment of comorbidities and differential diagnoses
- Assessment of need for social/psychological support

Invite the patient to enroll in a registry (if available) or clinical trial (if appropriate)

What is Type 2 inflammation?

Type 2 inflammation is found in the majority of people with severe asthma. It is characterized by cytokines such as interleukin (IL)-4, IL-5 and IL-13, which are often produced by the adaptive immune system on recognition of allergens. It may also be activated by viruses, bacteria and irritants that stimulate the innate immune system via production of IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) by epithelial cells. Type 2 inflammation is often characterized by eosinophils or increased FeNO, and may be accompanied by atopy, whereas non-Type 2 inflammation is often characterized by neutrophils. In many patients with asthma, Type 2 inflammation rapidly improves when ICS are taken regularly and correctly; this is classified as mild or moderate asthma. In severe asthma, Type 2 inflammation may be relatively refractory to high dose ICS. It may respond to OCS but their serious adverse effects mean that alternative treatments should be sought.

Could the patient have refractory or underlying Type 2 inflammation?

The possibility of refractory Type 2 inflammation should be considered if any of the following are found while the patient is taking high-dose ICS or daily OCS:
- Blood eosinophils ≥150/μl, and/or
- FeNO ≥20ppb, and/or
- Sputum eosinophils ≥2%, and/or
- Asthma is clinically allergen-driven

Patients requiring maintenance OCS may also have underlying Type 2 inflammation. However, biomarkers of Type 2 inflammation (blood eosinophils, sputum eosinophils and FeNO) are often suppressed by OCS. If possible, these tests should be performed before starting OCS (a short course, or maintenance treatment), or on the lowest possible OCS dose.

Further assessment and management should be by a specialist, preferably in a multidisciplinary severe asthma clinic if available. The team may include a certified asthma educator and health professionals from fields such as speech pathology, ear nose and throat (ENT), social work and mental health.

Assessment includes:
- Assessment of the patient’s inflammatory phenotype: Type 2 or non-Type 2?
- More detailed assessment of comorbidities and differential diagnoses
- Assessment of need for social/psychological support

Invite the patient to enroll in a registry (if available) or clinical trial (if appropriate)

What is Type 2 inflammation?

Type 2 inflammation is found in the majority of people with severe asthma. It is characterized by cytokines such as interleukin (IL)-4, IL-5 and IL-13, which are often produced by the adaptive immune system on recognition of allergens. It may also be activated by viruses, bacteria and irritants that stimulate the innate immune system via production of IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) by epithelial cells. Type 2 inflammation is often characterized by eosinophils or increased FeNO, and may be accompanied by atopy, whereas non-Type 2 inflammation is often characterized by neutrophils. In many patients with asthma, Type 2 inflammation rapidly improves when ICS are taken regularly and correctly; this is classified as mild or moderate asthma. In severe asthma, Type 2 inflammation may be relatively refractory to high dose ICS. It may respond to OCS but their serious adverse effects mean that alternative treatments should be sought.

Could the patient have refractory or underlying Type 2 inflammation?

The possibility of refractory Type 2 inflammation should be considered if any of the following are found while the patient is taking high-dose ICS or daily OCS:
- Blood eosinophils ≥150/μl, and/or
- FeNO ≥20ppb, and/or
- Sputum eosinophils ≥2%, and/or
- Asthma is clinically allergen-driven

Patients requiring maintenance OCS may also have underlying Type 2 inflammation. However, biomarkers of Type 2 inflammation (blood eosinophils, sputum eosinophils and FeNO) are often suppressed by OCS. If possible, these tests should be performed before starting OCS (a short course, or maintenance treatment), or on the lowest possible OCS dose.
Invite patient to enroll in a registry (if available) or clinical trial (if appropriate)

Systematic collection of data in broader populations of patients than are currently eligible for clinical trials\(^2\) will help in understanding the mechanisms and burden of severe asthma. There is a need for pragmatic clinical trials in severe asthma, including studies comparing two or more active treatments.

6a If there is NO evidence of Type 2 inflammation

If the patient has no evidence of persistent Type 2 inflammation (section 5):

- **Review the basics** for factors that may be contributing to symptoms or exacerbations: differential diagnosis, inhaler technique, adherence, comorbidities, medication side-effects (Section 2)
- **Recommend avoidance of relevant exposures** (tobacco smoke, pollution, allergens if sensitized and there is evidence of benefit from withdrawal, irritants, infections). Ask about exposures at home and at work
- **Consider additional diagnostic investigations** (if available and not already done): sputum induction to confirm inflammatory phenotype, high resolution chest CT, bronchoscopy to exclude unusual comorbidities or alternative diagnoses such as tracheobronchomalacia or sub-glottic stenosis; functional laryngoscopy for inducible laryngeal obstruction.
- **Consider a trial of non-biologic add-on treatment** if not already tried, e.g. LAMA, leukotriene modifier, low-dose azithromycin (adults)\(^{17,23}\) but with azithromycin consider potential for antibiotic resistance. Consider add-on low dose OCS, but implement strategies such as alternate-day treatment to minimize side-effects. Stop ineffective add-on therapies.
- **Consider bronchial thermoplasty**, with registry enrollment. However, the evidence for efficacy and long-term safety is limited.\(^{25,26}\)

No biologic options are currently available for non-Type 2 severe asthma.

6a Non-biologic options if there IS evidence of Type 2 inflammation

For patients with elevated Type 2 biomarkers despite high dose ICS (see section 5), consider non-biologic options first, given the current high cost of biologic therapy:

- **Assess adherence objectively** by monitoring of prescribing or dispensing records, blood prednisone levels,\(^{27}\) or electronic inhaler monitoring.\(^{28}\) In one study, suppression of high FeNO after 5 days of directly-observed therapy was an indicator of past poor adherence.\(^{29}\)
- **Consider clinical Type 2 phenotypes** for which specific add-on treatment is available (see GINA 2021 report Chapter 3D). For example, for aspirin-exacerbated respiratory disease (AERD), consider add-on leukotriene modifier and possibly aspirin desensitization. For allergic bronchopulmonary aspergillosis (ABPA), consider add-on OCS ± anti-fungal agent. For chronic rhinosinusitis and/or nasal polyposis, consider intensive intranasal corticosteroids; surgical advice may be needed. For patients with atopic dermatitis, topical steroid or non-steroidal therapy may be helpful.
 - **Consider increasing the ICS dose** for 3-6 months, and review again

6b Consider add-on biologic Type 2 targeted treatments

If available and affordable, consider an add-on Type 2 targeted biologic for patients with exacerbations or poor symptom control despite taking at least high dose ICS-LABA, and who have allergic or eosinophilic biomarkers or need maintenance OCS.

Where relevant, test for parasitic infection, and treat if present, before commencing Type 2 targeted treatment (see section 5).

Consider whether to start first with anti-IgE, anti-IL5/5R or anti-IL4R

When choosing between available therapies, consider the following:

- Does the patient satisfy local payer eligibility criteria?
- Predictors of asthma response (see below)
- Type 2 comorbidities such as atopic dermatitis, nasal polyposis
- Cost
- Dosing frequency
- Delivery route (IV or SC; potential for self-administration)
- Patient preference

Local payer eligibility criteria for biologic therapy may vary substantially; they are indicated here by the symbol.\(^\circ\) There is an urgent need for head-to-head comparisons of different biologics in patients eligible for more than one biologic.

For any biologic therapy, ensure that the manufacturer’s and/or regulator’s instructions for storage, administration and the duration of monitoring post-administration are followed. Provide the patient with advice about what to do if they experience any adverse effects, including hypersensitivity reactions.

| Add-on anti-IgE for severe allergic asthma |
| **Currently approved**: omalizumab for ages ≥6 years,\(^\circ\) given by SC injection every 2-4 weeks, with dose based on weight and serum IgE.\(^\circ\) May also be indicated for nasal polyposis and chronic idiopathic urticaria.\(^\circ\) Self-administration may be an option.\(^\circ\) |
| **Mechanism**: binds to Fc part of free IgE, preventing binding of IgE to FcεR1 receptors, reducing free IgE and down-regulating receptor expression |

\(^{23}\): omalizumab for ages ≥6 years,\(^\circ\) given by SC injection every 2-4 weeks, with dose based on weight and serum IgE.\(^\circ\) May also be indicated for nasal polyposis and chronic idiopathic urticaria.\(^\circ\) Self-administration may be an option.\(^\circ\)
Assess and treat severe asthma phenotypes cont’d

Eligibility criteria vary between payers, but usually include:

- Sensitization to inhaled allergen(s) on skin prick testing or specific IgE,
- Total serum IgE and body weight within local dosing range,
- More than a specified number of exacerbations within the last year.

Write your local eligibility criteria here:

Benefits: RCTs in severe asthma: 34% decrease in severe exacerbations, but no significant difference in symptoms or quality of life. In open-label studies in patients with severe allergic asthma and ≥1 severe exacerbation in last 12 months, there was a 50-65% reduction in exacerbation rate, a significant improvement in quality of life, and 40-50% reduction in OCS dose. In patients with nasal polyps, omalizumab improved subjective and objective outcomes.

Potential predictors of good asthma response to omalizumab:

- Baseline IgE level does not predict likelihood of response
- In RCTs: in one study, a greater decrease in exacerbations was observed (cf. placebo) with blood eosinophils ≥260/μl or FeNO ≥20ppb (the median values) but in two large observational studies, exacerbations were reduced with both low or high blood eosinophils, or with both low or high FeNO.
- Childhood-onset asthma
- Clinical history suggesting allergen-driven symptoms

Adverse effects: injection site reactions; anaphylaxis in ~0.2% patients

Suggested initial trial: at least 4 months

Add-on anti-IL5 or anti-IL5R for severe eosinophilic asthma

Currently approved: For ages ≥12 years: mepolizumab (anti-IL5), 100mg by SC injection 4-weekly, or benralizumab (anti-IL5 receptor α), 30mg by SC injection every 4 weeks for 3 doses then every 8 weeks. For ages 6–11 years: reslizumab (anti-IL5), 3mg/kg by IV infusion every 4 weeks. For ages 6–11 years: mepolizumab, 40mg by SC injection every 4 weeks. Mepolizumab may also be indicated for EGPA. Self-administration may be an option.

Mechanism: mepolizumab and reslizumab bind circulating IL-5; benralizumab binds to IL-5 receptor alpha subunit leading to apoptosis (cell death) of eosinophils.

Eligibility criteria: these vary by product and between payers, but usually include:

- More than a specified number of severe exacerbations in the last year,
- Blood eosinophils above locally specified level (e.g. ≥150 or ≥300/μl). There is sometimes a different eosinophil cutpoint for patients taking OCS.

Write your local eligibility criteria here:

Outcomes: RCTs in severe asthma patients with exacerbations in the last year, with varying eosinophil criteria: anti-IL5 and anti-IL5R led to ~55% reduction in severe exacerbations, and improved quality of life, lung function and symptom control. All reduced blood eosinophils; almost completely with benralizumab. In patients taking OCS, median OCS dose was able to be reduced by ~50% with mepolizumab or benralizumab compared with placebo. Efficacy data for mepolizumab in children are limited to one very small uncontrolled open label study. In patients with nasal polyps, mepolizumab improved subjective and objective outcomes and reduced the need for surgery.

Potential predictors of good asthma response to anti-IL5 or anti-IL5R:

- Higher blood eosinophils (strongly predictive)
- Higher number of severe exacerbations in previous year (strongly predictive)
- Adult-onset asthma
- Nasal polyposis
- Maintenance OCS at baseline
- Low lung function (FEV1 <65% predicted in one study)

Adverse effects: injection site reactions; anaphylaxis is rare; adverse events generally similar between active and placebo groups

Suggested initial trial: at least 4 months

COPYRIGHTED MATERIAL - DO NOT COPY OR DISTRIBUTE

Adolescents and adults with difficult-to-treat and severe asthma © GINA 2021 www.ginasthma.org
Add-on anti-IL4R for severe eosinophilic/Type 2 asthma or patients requiring maintenance OCS

Currently approved: For ages ≥12 years; dupilumab (anti-IL4 receptor α), 200mg or 300mg by SC injection every 2 weeks for severe eosinophilic/Type 2 asthma; 300mg by SC injection every 2 weeks for OCS-dependent severe asthma or if there is concomitant moderate/severe atopic dermatitis. May also be indicated for atopic dermatitis. Self-administration may be an option.

Mechanism: binds to interleukin-4 (IL-4) receptor alpha, blocking both IL-4 and IL-13 signaling

Eligibility criteria: these vary between payers, but usually include:
• More than a specified number of severe exacerbations in the last year, and
• Type 2 biomarkers above a specified level (e.g. blood eosinophils ≥300/μl or FeNO ≥25 ppb); OR
• Requirement for maintenance OCS

Dupilumab is also indicated for treatment of moderate-severe atopic dermatitis. In patients with nasal polyps, dupilumab reduced the size of nasal polyps, improved nasal symptoms and reduced the need for OCS or sinus surgery.

Write your local eligibility criteria here:

Outcomes: RCTs in patients with uncontrolled severe asthma (ACQ-5 ≥ 1.5) and at least one exacerbation in the last year: anti-IL4R led to ~50% reduction in severe exacerbations, and significantly improved quality of life, symptom control and lung function. In patients with OCS-dependent severe asthma, without minimum requirements for blood eosinophil count or FeNO, treatment with anti-IL4R reduced median OCS dose by ~30% versus placebo.

Potential predictors of good asthma response:
• Higher blood eosinophils (strongly predictive)
• Higher FeNO

Adverse effects: injection-site reactions; transient blood eosinophilia; rare cases of eosinophilic granulomatosis with polyangiitis (EGPA). Limited evidence in patients with baseline blood eosinophils >1,500/μl (excluded from Phase III studies).

Suggested initial trial: at least 4 months

Review response to an initial trial of add-on Type 2 targeted therapy

• At present, there are no well-defined criteria for a good response, but consider exacerbations, symptom control, lung function, side-effects, treatment intensity (including OCS dose), and patient satisfaction
• If the response is unclear, consider extending the trial to 6-12 months
• If there is no response, stop the biologic therapy, and consider switching to a trial of a different Type 2 targeted therapy, if available and the patient is eligible; review response as above
Review the patient's response to add-on biologic therapy after 3-4 months, and every 3-6 months for ongoing care, including:

- Asthma: symptom control, e.g. Asthma Control Test, Asthma Control Questionnaire; frequency and severity of exacerbations (e.g. were OCS needed), lung function
- Type 2 comorbidities, e.g. nasal polyposis, atopic dermatitis
- Medications: treatment intensity, including dose of OCS, side-effects, affordability
- Patient satisfaction

If the patient has had a good response to Type 2 targeted therapy:

Re-evaluate the need for each asthma medication every 3-6 months, but do not completely stop inhaled therapy.

Base the order of reduction or cessation of add-on treatments on the observed benefit when they were started, patient risk factors, medication side-effects, cost, and patient satisfaction.

For oral treatments, consider gradually decreasing or stopping OCS first, because of their significant adverse effects. Tapering may be supported by internet-based monitoring of symptom control and FeNO. Monitor patients for risk of adrenal suppression, and provide patient and GP with advice about the need for extra corticosteroid doses during injury, illness or surgery for up to 6 months after cessation of long-term OCS. Continue to assess for presence of osteoporosis, and review need for preventative strategies including bisphosphonates.

For inhaled treatments, consider reducing the ICS dose after 3-6 months, but do not completely stop inhaled therapy. Current consensus advice is to continue at least medium dose ICS. Patients should be reminded of the importance of continuing their inhaled controller.

For biologic treatments, current consensus advice is that, generally, for a patient with a good response, a trial of withdrawal of the biologic should not be considered until after at least 12 months of treatment, and only if asthma remains well-controlled on medium dose ICS therapy, and (for allergic asthma) there is no further exposure to a previous well-documented allergic trigger. There are limited studies of cessation of biologic therapy, in these studies, symptom control worsened and/or exacerbations recurred for many (but not all) patients after cessation of the biologic.

If the patient has NOT had a good response to any Type 2 targeted therapy:

Review the basics for factors contributing to symptoms, exacerbations and poor quality of life (see Section 2): diagnosis, inhaler technique, adherence, modifiable risk factors and triggers including smoking and other environmental exposures at home or work, comorbidities including obesity, medication side-effects or drug interactions, socio-economic and mental health issues.

Consider additional investigations (if not already done): high resolution chest CT; induced sputum to confirm inflammatory phenotype, consider referral if available, including for diagnosis of alternative conditions.

Reassess treatment options (if not already done), such as add-on low-dose azithromycin (adults only; consider potential for antibiotic resistance); consider add-on low-dose maintenance OCS, but implement strategies such as alternate-day therapy and add-on bisphosphonates to minimize side-effects, and alert patient to the need for additional corticosteroid therapy during illness or surgery. Consider bronchial thermoplasty (+ registry).

Stop ineffective add-on therapies, but do not completely stop ICS

Continue to collaboratively optimize patient care

Ongoing management of a patient with severe asthma involves a collaboration between the patient, the GP, specialist(s), and other health professionals, to optimize clinical outcomes and patient satisfaction.

Continue to review the patient every 3-6 months, including:

- Clinical asthma measures (symptom control; exacerbations; lung function) -see GINA 2021 report for details
- Comorbidities
- The patient's risk factors for exacerbations
- Treatments (check inhaler technique and adherence; review need for add-on treatments; assess side-effects including of OCS; optimize comorbidity management and non-pharmacologic strategies)
- The patient's social and emotional needs

The optimal frequency and location of review (GP or specialist) will depend on the patient’s asthma control, risk factors and comorbidities, and their confidence in self-management, and may depend on local payer requirements and availability of specialist physicians.
Communicate regularly about:
• Outcome of review visits (as above)
• Patient concerns
• Action plan for worsening asthma or other risks
• Changes to medications (asthma and non-asthma); potential side-effects
• Indications and contact details for expedited review

Glossary of asthma medication classes

For more details, see GINA 2021 report and Appendix (www.ginasthma.org), Product Information from manufacturers, and local eligibility criteria from payers.

<table>
<thead>
<tr>
<th>Medications</th>
<th>Action and use</th>
<th>Adverse effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller Medications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhaled corticosteroids (ICS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pMDIs or DPIs) e.g. beclometasone, budesonide, ciclesonide, fluticasone, fluticasone furoate, mometasone, triamcinolone</td>
<td>ICS are the most effective anti-inflammatory medications for asthma. ICS reduce symptoms, increase lung function, improve quality of life, and reduce the risk of exacerbations and asthma-related hospitalizations or death. ICS differ in their potency and bioavailability, but most of the benefit is seen at low doses (see GINA report Box 3-6 for low, medium and high doses of different ICS).</td>
<td>Most patients using ICS do not experience side-effects. Local side-effects include oropharyngeal candidiasis and dysphonia; these can be reduced by use of spacer with pMDIs, and rinsing with water and spitting out after inhalation. Long-term high doses increase the risk of systemic side-effects such as osteoporosis, cataract and glaucoma.</td>
</tr>
<tr>
<td>ICS and long-acting beta₂-agonist bronchodilator combinations (ICS-LABA)</td>
<td>When a low dose of ICS alone fails to achieve good control of asthma, the addition of LABA to ICS improves symptoms and lung function and reduces exacerbations in more patients, more rapidly, than doubling the dose of ICS. Two regimens are available: low-dose combination beclometasone-formoterol or budesonide-formoterol for maintenance and reliever treatment (MART); and low-dose maintenance ICS-LABA with SABA as reliever. MART with low dose ICS-formoterol is preferred as it reduces exacerbations compared with conventional maintenance therapy with SABA reliever.</td>
<td>The LABA component may be associated with tachycardia, headache or cramps. LABA should not be used without ICS in patients with asthma (or asthma +COPD) due to increased risk of serious adverse outcomes.</td>
</tr>
<tr>
<td>(pMDIs or DPIs) e.g. beclometasone-formoterol, budesonide-formoterol, fluticasone furoate-vilanterol, fluticasone propionate-formoterol, mometasone-salmeterol, mometasone-indacaterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukotriene modifiers (tablets) e.g. montelukast, pranlukast, zafirlukast, zileuton</td>
<td>Target one part of the inflammatory pathway in asthma. Used as an option for controller therapy, particularly in children. Used alone, they are less effective than low dose ICS; when added to ICS, they are less effective than ICS-LABA.</td>
<td>Few side-effects in placebo-controlled studies except elevated liver function tests with zileuton and zafirlukast. Risk of serious behavior and mood changes, including in children, should be discussed with patients or parents.</td>
</tr>
</tbody>
</table>
Glossary of asthma medication classes cont’d

<table>
<thead>
<tr>
<th>Medications</th>
<th>Action and use</th>
<th>Adverse effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromones</td>
<td>(pMDIs or DPIs) e.g. sodium cromoglycate and nedocromil sodium</td>
<td>Very limited role in long-term treatment of asthma. Weak anti-inflammatory effect, less effective than low-dose ICS. Requires meticulous inhaler maintenance.</td>
</tr>
</tbody>
</table>

| **Add-on Controller Medications** | |
| Long-acting anticholinergic | Add-on or combination option at Step 5 (or, non-preferred, at Step 4) for patients with uncontrolled asthma despite ICS-LABA. For patients with exacerbations despite ICS-LABA, ensure that ICS is increased to at least medium dose before considering need for add-on LAMA. | Side-effects are uncommon but include dry mouth. |

| **Anti-IgE** | (omalizumab, SC, ≥6 years) | An add-on option for patients with severe allergic asthma uncontrolled on high-dose ICS-LABA. May also be indicated for nasal polyposis and chronic idiopathic urticaria. Self-administration may be an option. | Reactions at the site of injection are common but minor. Anaphylaxis is rare. |

| **Anti-IL5/anti-IL5R** | (anti-IL5 mepolizumab [SC, ≥12 or ≥6 years], or reslizumab [IV, ≥18 years], or anti-IL5 receptor bencilizumab [SC, ≥12 years]) | Add-on options for patients with severe eosinophilic asthma uncontrolled on high-dose ICS-LABA. Mepolizumab may also be indicated for eosinophilic granulomatosis with polyangiitis (EGPA). Self-administration may be an option. | Headache and reactions at injection site are common but minor. |

| **Anti-IL4R** | (dupilumab, SC, ≥12 years) | An add-on option for patients with severe eosinophilic Type 2 asthma uncontrolled on high dose ICS-LABA, or requiring maintenance OCS. May also be indicated for treatment of moderate-severe atopic dermatitis and chronic rhinosinusitis with nasal polyposis (CRSwNP). Self-administration may be an option. | Reactions at injection site are common but minor. Blood eosinophilia occurs in 4-13% of patients. Rarely, cases of EGPA may occur. |

| **Systemic corticosteroids** | (tablets, suspension or IM or IV injection) e.g. prednisone, prednisolone, methylprednisolone, hydrocortisone | Short-term treatment (usually 5–7 days in adults) is important in the treatment of severe acute exacerbations, with main effects seen after 4–6 hours. Oral corticosteroid (OCS) therapy is preferred to IM or IV therapy and is as effective in preventing relapse. Tapering is required if treatment is given for more than 2 weeks. Long-term treatment with OCS may be required for some patients with severe asthma, but side-effects are problematic and frequency required. | Short-term use: some adverse effects e.g. sleep disturbance, GERD, appetite increase, hyperglycaemia, mood changes. Long-term use: limited by significant systemic adverse effects e.g. cataract, glaucoma, hypertension, diabetes, adrenal suppression, osteoporosis. Assess for OCS risk and treat appropriately. |

| **Reliever Medications** | |
| **Short-acting inhaled beta2-agonist bronchodilators (SABA)** | (pMDIs, DPIs and, rarely, solution for nebulization or injection) e.g. salbutamol (albuterol), terbutaline. | Inhaled SABAs provide quick relief of symptoms and bronchoconstriction including in acute exacerbations, and for pre-treatment of exercise-induced bronchoconstriction. SABAs should be used only as-needed at the lowest dose and frequency required. Tremor and tachycardia are commonly reported with initial use of SABA. Tolerance to regular use develops rapidly. Excess use, or poor response, indicate poor asthma control and risk of exacerbations. |

| **Low-dose ICS-formoterol** | (beclometasone-formoterol or budesonide-formoterol) | This is the reliever medication for patients prescribed maintenance and reliever treatment, or as-needed ICS-formoterol only in patients with mild asthma. It reduces the risk of exacerbations compared with using SABA as reliever, with similar symptom control. As for ICS-LABA above |

| **Short-acting anticholinergics** | (pMDIs or DPIs) e.g. ipratropium bromide, oxitropium bromide. May be in combination with SABAs. | Long-term use: ipratropium is a less effective reliever medication than SABAs. Short-term use in acute asthma: inhaled ipratropium added to SABA reduces the risk of hospital admission Dryness of the mouth or a bitter taste. | |
Acknowledgements

The activities of the Global Initiative of Asthma are supported by the work of members of the GINA Board of Directors and Committees (listed below). The members of the GINA committees are solely responsible for the statements and recommendations presented in this and other GINA publications. GINA collaborated with Tomoko Ichikawa, MS (Institute for Healthcare Delivery Design, University of Illinois at Chicago, USA) and Hugh Musick, MBA (Institute for Healthcare Delivery Design, University of Illinois at Chicago, USA) in developing this severe asthma Pocket Guide. We thank Alan Kaplan, Ewa Nizankowska-Mogilnicka, Chau Ngo Quy, Ruxandra Ulmeanu, Elisabeth Bel and Sally Wenzel for their valuable input into the Pocket Guide.

GINA Board of Directors (2020)
Louis-Philippe Boulet*, Canada; Chair; Eric Bateman, South Africa; Guy Brusselle, Belgium; Alvaro Cruz*, Brazil; J Mark FitzGerald, Canada; Hiromasa Inoue, Japan; Jerry Krishnan*, USA; Mark Levy, UK; Jiangtao Lin, China; Helen Reddel*, Australia; Arzu Yorgancioglu*, Turkey.

GINA Program Director: Rebecca Decker, USA

GINA Science Committee (2020)
Helen Reddel, Australia, Chair; Leonard Bacharier, USA; Eric Bateman, South Africa; Louis-Philippe Boulet, Guy Brusselle, Belgium; Roland Buhl, Germany; Liesbeth Duijts, The Netherlands; Louise Fleming, UK; J Mark FitzGerald, Canada; Hiromasa Inoue, Japan; Fanny Wai-san Ko, Hong Kong; Jerry Krishnan, USA*; Paulo Pitrez, Brazil; Aziz Sheikh, UK.

GINA Dissemination and Implementation Committee (2020)
Arzu Yorgancioglu, Turkey, Chair; other members indicated by asterisks (*) above.

GINA publications

- Global Strategy for Asthma Management and Prevention (2021). This report provides an integrated approach to asthma that can be adapted for a wide range of health systems. The report has a user-friendly format with many practical summary tables and flow-charts for use in clinical practice. It is updated yearly.
- GINA Online Appendix (2021). Detailed information to support the main GINA report. Updated yearly.
- Pocket Guide for asthma management and prevention for adults and children older than 5 years (2021). Summary for primary health care providers, to be used in conjunction with the main GINA report.
- Interim guidance about COVID-19 and asthma: This slide set provides practical advice about asthma and COVID-19. It is updated as new information is available.
- Clinical practice aids and implementation tools are available in the Toolbox on the GINA website www.ginasthma.org

Other resources for severe asthma

Severe asthma toolkit - Australian Centre of Excellence in Severe Asthma
https://toolkit.severeasthma.org.au/

References

17. Sobieraj DM, et al, Association of inhaled corticosteroids and long-acting beta-agonists as controller and quick relief therapy with exacerbations and symptom control in persistent asthma: A systematic review and meta-analysis. JAMA, 2018;319:1485-96

