Global Strategy for Asthma Management and Prevention

Updated 2024
©2024 Global Initiative for Asthma
Global Strategy for Asthma Management and Prevention (2024 update)

The reader acknowledges that this report is intended as an evidence-based asthma management strategy, for the use of health professionals and policy-makers. It is based, to the best of our knowledge, on current best evidence and medical knowledge and practice at the date of publication. When assessing and treating patients, health professionals are strongly advised to use their own professional judgment, and to take into account local and national regulations and guidelines. GINA cannot be held liable or responsible for inappropriate health care associated with the use of this document, including any use which is not in accordance with applicable local or national regulations or guidelines.

Table of contents

Tables and figures.. 5
Preface... 8
Members of GINA committees (2023–24) ... 9
Abbreviations .. 11
Introduction .. 14
Methodology .. 15
WHAT’S NEW IN GINA 2024? ... 19

1. Definition, description, and diagnosis of asthma in adults, adolescents and children 6–11 years 23
 Definition of asthma ... 23
 Description of asthma .. 23
 Making the initial diagnosis .. 24
 Differential diagnosis... 27
 Confirming the diagnosis of asthma in patients already taking ICS-containing treatment 32
 How to make the diagnosis of asthma in other contexts ... 32

2. Assessment of asthma in adults, adolescents and children 6–11 years ... 35
 Overview .. 36
 Assessing asthma symptom control .. 38
 Assessing future risk of exacerbations, lung function decline and adverse effects 41
 Role of lung function in assessing asthma control .. 42
 Assessing asthma severity .. 43
 How to distinguish between uncontrolled asthma and severe asthma ... 46

3. Principles of asthma management in adults, adolescents and children 6–11 years 48
 The patient–healthcare provider partnership ... 49
 Long-term goal of asthma management .. 50
 Remission of asthma ... 50
 Personalized control-based asthma management .. 52
 Non-pharmacological strategies .. 57
 Referral for expert advice .. 66

4. Medications and strategies for adults, adolescents and children 6–11 years ... 67
 Categories of asthma medications .. 69
 Why should ICS-containing medication be commenced from the time of diagnosis? 72
 Adults and adolescents: asthma treatment tracks ... 74
 Initial asthma treatment for adults and adolescents ... 75
 Asthma treatment steps in adults and adolescents ... 77
 Track 1 (preferred): treatment steps 1–4 for adults and adolescents using ICS-formoterol reliever 78
Track 2 (alternative): treatment steps 1–4 for adults and adolescents using SABA reliever

Step 5 (Tracks 1 and 2) in adults and adolescents

About asthma treatment for children 6–11 years

Initial asthma treatment in children 6–11 years

Asthma treatment steps for children 6–11 years

Reviewing response and adjusting treatment – adults, adolescents and children 6–11 years

Allergen immunotherapy

Vaccinations

Other therapies

5. Guided asthma self-management education and skills training

Skills training for effective use of inhaler devices

Shared decision-making for choice of inhaler device

Adherence with medication and with other advice

Asthma information

Training in guided asthma self-management

Regular review by a healthcare provider or trained healthcare worker

School-based programs for children

6. Managing asthma with multimorbidity and in specific populations

Managing multimorbidity

Managing asthma during the COVID-19 pandemic

Managing asthma in specific populations or settings

7. Diagnosis and initial treatment in adults with features of asthma, COPD or both

Objectives

Background to diagnosing asthma and/or COPD in adult patients

Assessment and management of chronic respiratory symptoms

8. Difficult-to-treat and severe asthma in adults and adolescents

Definitions: uncontrolled, difficult-to-treat, and severe asthma

Prevalence: how many people have severe asthma?

Importance: the impact of severe asthma

Overview of decision tree for assessment and management of difficult-to-treat and severe asthma

Investigate and manage difficult-to-treat asthma in adults and adolescents

Investigate the severe asthma phenotype and consider non-biologic therapies

Consider Type 2-targeted biologic therapies

Assess, manage and monitor ongoing severe asthma treatment

9. Management of worsening asthma and exacerbations in adults, adolescents and children 6–11 years

Overview

Diagnosis of exacerbations
Tables and figures

DIAGNOSIS

Box 1-1. Diagnostic flowchart for adults, adolescents and children 6–11 years in clinical practice 25
Box 1-2. Criteria for initial diagnosis of asthma in adults, adolescents, and children 6–11 years 26
Box 1-3. Differential diagnosis of asthma in adults, adolescents and children 6–11 years.......................... 27
Box 1-4. Steps for confirming the diagnosis of asthma in a patient already taking ICS-containing treatment ... 30
Box 1-5. How to step-down ICS-containing treatment to help confirm the diagnosis of asthma 32

ASSESSMENT

Box 2-1. Summary of assessment of asthma in adults, adolescents, and children 6–11 years 36
Box 2-2. GINA assessment of asthma control at clinical visits in adults, adolescents and children 6–11 years 37
Box 2-3. Specific questions for assessment of asthma in children 6–11 years .. 40
Box 2-4. Investigating poor symptom control and/or exacerbations despite treatment 47

ASTHMA MANAGEMENT

Box 3-1. Communication strategies for healthcare providers ... 49
Box 3-2. Long-term goal of asthma management ... 50
Box 3-3. The asthma management cycle for personalized asthma care .. 53
Box 3-4. Population-level versus patient-level decisions about asthma treatment 54
Box 3-5. Treating potentially modifiable risk factors to reduce exacerbations and minimize OCS use 55
Box 3-6. Non-pharmacological interventions – summary (see following text for details) 57
Box 3-7. Effectiveness of avoidance measures for indoor allergens ... 62
Box 3-8. Indications for considering referral for expert advice, where available 66

ASTHMA MEDICATIONS

Box 4-1. Terminology for asthma medications ... 70
Box 4-2. Low, medium and high daily metered doses of inhaled corticosteroids (alone or with LABA) 71

Adults and adolescents

Box 4-3. Asthma treatment tracks for adults and adolescents ... 74
Box 4-4. Initial asthma treatment for adults and adolescents with a diagnosis of asthma 75
Box 4-5. Flowchart for selecting initial treatment in adults and adolescents with a diagnosis of asthma 76
Box 4-6. Personalized management for adults and adolescents to control symptoms and minimize future risk 77
Box 4-7. Track 1 (preferred) treatment Steps 1–4 for adults and adolescents .. 78
Box 4-8. Medications and doses for GINA Track 1: anti-inflammatory reliever (AIR) therapy 84
Box 4-9. Track 2 (alternative) treatment Steps 1–4 for adults and adolescents .. 86

Children 6–11 years

Box 4-10. Initial asthma treatment for children aged 6–11 years with a diagnosis of asthma 94
Box 4-11. Flowchart for selecting initial treatment in children aged 6–11 years with a diagnosis of asthma ... 95
Box 4-12. Personalized management for children 6–11 years to control symptoms and minimize future risk . 96
Stepping down
Box 4-13. Options for stepping down treatment in adults and adolescents once asthma is well controlled... 102

ASTHMA SELF-MANAGEMENT EDUCATION AND SKILLS TRAINING
Box 5-1. Shared decision-making between health professional and patient about choice of inhalers 109
Box 5-2. Choice and effective use of inhaler devices ... 110
Box 5-3. Poor adherence with prescribed maintenance treatment in asthma .. 112
Box 5-4. Asthma information ... 113

PATIENTS WITH FEATURES OF ASTHMA AND COPD
Box 7-1. Current definitions of asthma and COPD, and clinical description of asthma-COPD overlap........ 133
Box 7-2. Syndromic approach to initial treatment in patients with asthma and/or COPD 134
Box 7-3. Spirometric measures in asthma and COPD ... 135
Box 7-4. Specialized investigations sometimes used in patients with features of asthma and COPD 137

DIFFICULT-TO-TREAT AND SEVERE ASTHMA
Box 8-1. What proportion of adults have difficult-to-treat or severe asthma? ... 140
Box 8-2. Decision tree – investigate and manage difficult to treat asthma in adult and adolescent patients.. 142
Box 8-3. Decision tree – assess and treat severe asthma phenotypes .. 143
Box 8-4. Decision tree – consider add-on biologic Type 2-targeted treatments ... 144
Box 8-5. Decision tree – monitor and manage severe asthma treatment ... 145

ASTHMA EXACERBATIONS
Box 9-1. Factors associated with increased risk of asthma-related death .. 160
Box 9-2. Self-management of worsening asthma in adults and adolescents with a written asthma action plan162
Box 9-3. Optimizing asthma treatment to minimize need for OCS ... 165
Box 9-4. Management of asthma exacerbations in primary care (adults, adolescents, children 6–11 years) 167
Box 9-5. Discharge management after acute care for asthma ... 170
Box 9-6. Management of asthma exacerbations in acute care facility (e.g., emergency department) 171

CHILDREN 5 YEARS AND YOUNGER

Diagnosis
Box 10-1. Probability of asthma diagnosis in children 5 years and younger .. 179
Box 10-2. Features suggesting a diagnosis of asthma in children 5 years and younger 180
Box 10-3. Questions that can be used to elicit features suggestive of asthma .. 180
Box 10-4. Common differential diagnoses of asthma in children 5 years and younger 183
Box 10-5. Key indications for referral of a child 5 years or younger for expert advice 184

Assessment and management
Box 11-1. GINA assessment of asthma control in children 5 years and younger ... 188
Box 11-2. Personalized management of asthma in children 5 years and younger .. 190
Box 11-3. Low daily doses of inhaled corticosteroids for children 5 years and younger 191
Box 11-4. Choosing an inhaler device for children 5 years and younger .. 191
Exacerbations

Box 12-1. Management of acute asthma or wheezing in children 5 years and younger 199
Box 12-2. Initial assessment of acute asthma exacerbations in children 5 years and younger 200
Box 12-3. Indications for immediate transfer to hospital for children 5 years and younger 200
Box 12-4. Emergency department management of asthma exacerbations in children 5 years and younger. 201

PRIMARY PREVENTION OF ASTHMA

Box 13-1. Advice about primary prevention of asthma in children 5 years and younger 207

IMPLEMENTATION

Box 14-1. Approach to implementation of the Global Strategy for Asthma Management and Prevention...... 210
Box 14-2. Essential elements required to implement a health-related strategy ... 210
Box 14-3. Examples of barriers to the implementation of evidence-based recommendations 211
Box 14-4. Examples of high-impact implementation interventions in asthma management 211
Preface

Asthma is a serious global health problem affecting all age groups. Its prevalence is increasing in many countries, especially among children. Although some countries have seen a decline in hospitalizations and deaths from asthma, asthma still imposes an unacceptable burden on healthcare systems, and on society through loss of productivity in the workplace and, especially for pediatric asthma, disruption to the family.

In 2023 the Global Initiative for Asthma celebrated 30 years of working to improve the lives of people with asthma by translating medical evidence into better asthma care worldwide. Established in 1993 by the National Heart, Lung, and Blood Institute and the World Health Organization, GINA works with healthcare professionals, researchers, patients and public health officials around the world to reduce asthma prevalence, morbidity and mortality. The Global Strategy for Asthma Management and Prevention (‘GINA Strategy Report’) was first published in 1995, and has been updated annually since 2002 by the GINA Science Committee. It contains guidance for primary care practitioners, specialists and allied health professionals, based on the latest high-quality evidence available. More resources and supporting material are provided online at www.ginasthma.org.

GINA supports global efforts to achieve environmental sustainability in health care, while ensuring that our guidance reflects an optimal balance between clinical and environmental priorities, with a particular focus on patient safety. GINA also supports efforts to ensure global availability of, and access to, effective quality-assured medications, to reduce the burden of asthma mortality and morbidity. Since 2001, GINA has organized the annual World Asthma Day, a focus for local and national activities to raise awareness of asthma and educate families and healthcare professionals about effective asthma care.

GINA is an independent organization funded solely through sale and licensing of its educational publications. Members of the GINA Board of Directors are drawn globally from leaders with an outstanding demonstrated commitment to asthma research, asthma clinical management, public health and patient advocacy. GINA Science Committee members are highly experienced asthma experts from around the world, who continually review and synthesize scientific evidence to provide guidance on asthma prevention, diagnosis and management. The GINA Dissemination Task Group is responsible for promoting GINA resources throughout the world. Members work with an international network of patient representatives and leaders in asthma care (GINA Advocates), to implement asthma education programs and support evidence-based care. GINA support staff comprise the Executive Director and Project Manager.

We acknowledge the superlative work of all who have contributed to the success of the GINA program. In particular, we recognize the outstanding long-term dedication of founding Scientific Director Dr Suzanne Hurd and founding Executive Director Dr Claude Lenfant in fostering GINA’s development until their retirement in 2015, and we were sad to hear of Dr Lenfant’s passing last year. A tribute to Dr Lenfant is available on the GINA website (https://ginasthma.org/in-memorium-a-tribute-to-claude-lenfant-10-12-1928-to-06-26-2023/). We acknowledge the invaluable commitment and skills of our current Executive Director Rebecca Decker, and Program Director Kristi Rurey. We continue to recognize the contribution of Prof J Mark FitzGerald to GINA for over 25 years until his passing in 2022. We also thank all members of the Science Committee, who receive no honoraria or reimbursement for their many hours of work in reviewing evidence and attending meetings, and the GINA Dissemination Working Group and GINA Advocates.

We hope you find this report to be a useful resource in the management of asthma and that it will help you work with each of your patients to provide the best personalized care,

Helen K Reddel, MBBS PhD
Chair, GINA Science Committee

Arzu Yorgancioglu, MD
Chair, GINA Board of Directors
Members of GINA committees (2023–24)

GINA Scientific Committee

Helen K. Reddel, MBBS PhD, Chair
Woolcock Institute of Medical Research,
Macquarie University
Sydney, Australia

Leonard B. Bacharier, MD
Vanderbilt University Medical Center
Nashville, TN, USA

Eric D. Bateman, MD
University of Cape Town Lung Institute
Cape Town, South Africa

Matteo Bonini MD, PhD
Department of Public Health and Infectious Diseases,
Sapienza University of Rome, Italy
National Heart and Lung Institute (NHLI), Imperial
College London, TN, UK

Arnaud Bourdin, MD, PhD
Department of Respiratory Diseases, University of
Montpellier
Montpellier, France

Christopher Brightling, FMedSci, PhD
Leicester NIHR Biomedical Research Centre,
University of Leicester
Leicester, UK

Guy Brusselle, MD, PhD
Ghent University Hospital
Ghent, Belgium

Roland Buhl, MD PhD
Mainz University Hospital
Mainz, Germany

Jeffrey M. Drazen, MD
Brigham and Woman’s Hospital
Boston, MA, USA

Francine Ducharme, MD
Departments of Pediatrics and of
Social and Preventive Medicine,
Sainte-Justine University Health Centre,
University of Montreal
Montreal, Quebec, Canada

Liesbeth Duijts, MD MSc Phd
University Medical Center
Rotterdam, The Netherlands

Louise Fleming, MBChB MD
Royal Brompton Hospital
London, United Kingdom

Hiromasa Inoue, MD
Kagoshima University
Kagoshima, Japan

Alan Kaplan, MD (from March 2024) University of
Toronto
Toronto, Ontario, Canada
Family Physician Airways Group of Canada
Markham, Ontario, Canada

Fanny Wai-san Ko, MD
The Chinese University of Hong Kong Hong Kong

Refoloe Masekela MBBCh, PhD
Department of Paediatrics and
Child Health, University of KwaZulu Natal
Durban, South Africa

Paulo Pitrez, MD, PhD
Pulmonary Division, Hospital Santa Casa de Porto
Alegre
Universidade Federal de Ciências da Saúde de
Porto Alegre (UFCSPA)
Porto Alegre, Brazil

Sundeep Salvi MD, PhD
Pulmocare Research and Education (PURE)
Foundation
Pune, India

Aziz Sheikh, BSc, MBBS, MSc, MD
The University of Edinburgh
Edinburgh, United Kingdom

GINA Board of Directors

Arzu Yorgancioglu, MD Chair
Celal Bayar University
Department of Pulmonology
Manisa, Turkey

Keith Allan, CBiol, MRSB
Patient Partner
University Hospitals of Leicester
Leicester, UK
GINA Program
Rebecca Decker, BS, MSJ
Kristi Rurey, AS

Editorial assistance
Charu Grover, PhD
Jenni Harman, BVSc, BA

Graphics assistance
Kate Chisnall

Information design for severe asthma decision tree
Tomoko Ichikawa, MS
Hugh Musick, MBA
Institute for Healthcare Delivery Design
University of Illinois, Chicago, USA

Disclosures for members of GINA committees can be found at www.ginasthma.org
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABPA</td>
<td>Allergic bronchopulmonary aspergillosis</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin-converting enzyme</td>
</tr>
<tr>
<td>ACQ</td>
<td>Asthma Control Questionnaire</td>
</tr>
<tr>
<td>ACT</td>
<td>Asthma Control Test (see also cACT)</td>
</tr>
<tr>
<td>AERP</td>
<td>Aspirin-exacerbated respiratory disease</td>
</tr>
<tr>
<td>AIR</td>
<td>Anti-inflammatory reliever (see Box 4-1, p.70)</td>
</tr>
<tr>
<td>ANCA</td>
<td>Antineutrophil cytoplasmic antibody</td>
</tr>
<tr>
<td>Anti-IL4Rα</td>
<td>Anti-interleukin 4 receptor alpha (monoclonal antibody)</td>
</tr>
<tr>
<td>Anti-IL5</td>
<td>Anti-interleukin 5 (monoclonal antibody)</td>
</tr>
<tr>
<td>Anti-IL5Rα</td>
<td>Anti-interleukin 5 receptor alpha (monoclonal antibody)</td>
</tr>
<tr>
<td>Anti-TSLP</td>
<td>Anti-thymic stromal lymphopoietin (monoclonal antibody)</td>
</tr>
<tr>
<td>APGAR</td>
<td>Activities, Persistent, trGgers, Asthma medications, Response to therapy</td>
</tr>
<tr>
<td>ATS/ERS</td>
<td>American Thoracic Society and European Respiratory Society</td>
</tr>
<tr>
<td>BDP</td>
<td>Beclometasone dipropionate</td>
</tr>
<tr>
<td>BD</td>
<td>Bronchodilator</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BNP</td>
<td>B-type natriuretic peptide</td>
</tr>
<tr>
<td>bpm</td>
<td>Beats per minute</td>
</tr>
<tr>
<td>BTS</td>
<td>British Thoracic Society</td>
</tr>
<tr>
<td>cACT</td>
<td>Childhood Asthma Control Test</td>
</tr>
<tr>
<td>CBC</td>
<td>Complete blood count (also known as full blood count [FBC])</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention [USA]</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>COVID-19</td>
<td>Coronavirus disease 2019</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CRSwNP</td>
<td>Chronic rhinosinusitis with nasal polyps</td>
</tr>
<tr>
<td>CRSsNP</td>
<td>Chronic rhinosinusitis without nasal polyps</td>
</tr>
<tr>
<td>CT</td>
<td>Computerized tomography</td>
</tr>
<tr>
<td>CXR</td>
<td>Chest X-ray</td>
</tr>
<tr>
<td>DLCO</td>
<td>Diffusing capacity in the lung for carbon monoxide</td>
</tr>
<tr>
<td>DEXA</td>
<td>Dual-energy X-ray absorptiometry</td>
</tr>
<tr>
<td>DPI</td>
<td>Dry-powder inhaler</td>
</tr>
<tr>
<td>ED</td>
<td>Emergency department</td>
</tr>
<tr>
<td>EGPA</td>
<td>Eosinophilic granulomatosis with polyangiitis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>FeNO</td>
<td>Fractional concentration of exhaled nitric oxide</td>
</tr>
<tr>
<td>FEV1</td>
<td>Forced expiratory volume in 1 second (measured by spirometry)</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced vital capacity (measured by spirometry)</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>Ratio of forced expiratory volume in 1 second to forced vital capacity</td>
</tr>
<tr>
<td>GERD</td>
<td>Gastro-esophageal reflux disease (GORD in some countries)</td>
</tr>
<tr>
<td>GOLD</td>
<td>Global Initiative for Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grading of Recommendations Assessment, Development and Evaluation (an approach to clinical practice guideline development)</td>
</tr>
<tr>
<td>HDM</td>
<td>House dust mite</td>
</tr>
<tr>
<td>HEPA</td>
<td>High-efficiency particulate air</td>
</tr>
<tr>
<td>HFA</td>
<td>Hydrofluoroalkane propellant</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>Human immunodeficiency virus/acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>ICS</td>
<td>Inhaled corticosteroid</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IM</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive care unit</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>LABA</td>
<td>Long-acting beta2 agonist</td>
</tr>
<tr>
<td>LAMA</td>
<td>Long-acting muscarinic antagonist (also called long-acting anticholinergic)</td>
</tr>
<tr>
<td>LMIC</td>
<td>Low- and middle-income countries</td>
</tr>
<tr>
<td>LTRA</td>
<td>Leukotriene receptor antagonist (also called leukotriene modifier)</td>
</tr>
<tr>
<td>MART</td>
<td>Maintenance-and-reliever therapy (with ICS-formoterol); in some countries called SMART (single-inhaler maintenance-and-reliever therapy)</td>
</tr>
<tr>
<td>n.a</td>
<td>Not applicable</td>
</tr>
<tr>
<td>NSAID</td>
<td>Nonsteroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>NO2</td>
<td>Nitrogen dioxide (air pollutant)</td>
</tr>
<tr>
<td>O2</td>
<td>Oxygen</td>
</tr>
<tr>
<td>OCS</td>
<td>Oral corticosteroids</td>
</tr>
<tr>
<td>OSA</td>
<td>Obstructive sleep apnea</td>
</tr>
<tr>
<td>PaCO2</td>
<td>Arterial partial pressure of carbon dioxide</td>
</tr>
<tr>
<td>PaO2</td>
<td>Arterial partial pressure of oxygen</td>
</tr>
<tr>
<td>PEF</td>
<td>Peak expiratory flow</td>
</tr>
<tr>
<td>PM10</td>
<td>Particulate matter with a particle diameter of 10 micrometers or less (air pollution)</td>
</tr>
<tr>
<td>pMDI</td>
<td>Pressurized metered-dose inhaler</td>
</tr>
<tr>
<td>QTc</td>
<td>Corrected QT interval on electrocardiogram</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized controlled trial</td>
</tr>
<tr>
<td>SABA</td>
<td>Short-acting beta2 agonist</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SC</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>SCIT</td>
<td>Subcutaneous allergen immunotherapy</td>
</tr>
<tr>
<td>sIgE</td>
<td>Specific immunoglobulin E</td>
</tr>
<tr>
<td>SLIT</td>
<td>Sublingual immunotherapy</td>
</tr>
<tr>
<td>S02</td>
<td>Sulfur dioxide (air pollutant)</td>
</tr>
<tr>
<td>T2</td>
<td>Type 2 airway inflammation (an asthma phenotype)</td>
</tr>
<tr>
<td>TSLP</td>
<td>Thymic stromal lymphopoietin</td>
</tr>
<tr>
<td>URTI</td>
<td>Upper respiratory tract infection</td>
</tr>
<tr>
<td>VCD</td>
<td>Vocal cord dysfunction (included in inducible laryngeal obstruction)</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WHO-PEN</td>
<td>The World Health Organization Package of essential noncommunicable disease interventions for primary care</td>
</tr>
</tbody>
</table>
Introduction

Asthma is a serious global health problem, affecting approximately 300 million people around the world, and causing around 1,000 deaths per day. Most of these deaths occur in low- and middle-income countries, and most of them are preventable. Asthma interferes with people’s work, education and family life, especially when children have asthma. Asthma is becoming more prevalent in many economically developing countries, and the cost of asthma treatment for healthcare systems, communities and individuals is increasing.

The Global Initiative for Asthma (GINA) was established to increase awareness about asthma among healthcare providers, public health authorities and communities, to improve management of asthma, and to help prevent asthma. Every year GINA publishes a strategy report, containing information and recommendations on asthma, based on the latest medical evidence. GINA’s aim is for these to be available and used throughout the world. GINA also promotes international collaboration on asthma research. GINA Committee members are listed on page 9.

Goals of asthma management

The population goal of asthma management is to prevent asthma deaths and minimize the burden of asthma on individuals, families, communities, health systems and the environment.

For individuals with asthma of all ages, the goal of asthma management is to achieve the patient's best possible long-term outcomes:

- Long-term asthma symptom control, which may include:
 - Few/no asthma symptoms
 - No sleep disturbance due to asthma
 - Unimpaired physical activity
- Long-term asthma risk minimization, which may include:
 - No exacerbations
 - Improved or stable personal best lung function
 - No requirement for maintenance OCS
 - No medication side-effects.

The patient’s goals for their asthma may be different from these medical goals; and patients with few or no asthma symptoms can still have severe or fatal exacerbations, including from external triggers such as viral infections, allergen exposure (if sensitized) or pollution.

Challenges in global asthma management

For healthcare providers, the challenges of managing asthma differ between regions and health systems. Despite laudable efforts to improve asthma care over the past 30 years, and the availability of effective medications, many patients globally have not benefited from advances in asthma treatment and often lack even the rudiments of care. Many of the world’s population live in areas with inadequate medical facilities and meager financial resources. GINA recognizes that the recommendations found in this report must be adapted to fit local practices and the availability of healthcare resources. To improve asthma care and patient outcomes, evidence-based recommendations must also be disseminated and implemented nationally and locally, and integrated into health systems and clinical practice. Implementation requires an evidence-based strategy involving professional groups and stakeholders and considering local cultural and socioeconomic conditions. GINA is a partner organization in the Global Alliance against Chronic Respiratory Diseases (GARD). Through the work of GINA, and in cooperation with GARD and the International Union Against Tuberculosis and Lung Diseases (IUATLD), substantial progress toward better care for all patients with asthma should be achieved in the next decade.

At the most fundamental level, patients in many areas do not have access to any inhaled corticosteroid-containing medications, which are the cornerstone of care for asthma patients of all severity. More broadly, medications remain the major contributor to the overall costs of asthma management, so the access to and pricing of high-quality asthma medications continues to be an issue of urgent need and a growing area of research interest. The safest and most
effective approach to asthma treatment in adolescents and adults, which also avoids the consequences of starting treatment with short-acting beta2 agonist (SABA) alone, and requires only a single medication, depends on access to the combination of inhaled corticosteroid and formoterol (ICS–formoterol) across all asthma severity levels.4,5 Budesonide-formoterol is included in the World Health Organization (WHO) essential medicines list, so the fundamental change to anti-inflammatory treatment that was first included in the 2019 GINA Strategy Report6 may provide a feasible solution to reduce the risk of severe exacerbations in low- and middle-income countries.5

The urgent need to ensure access to affordable, quality-assured inhaled asthma medications as part of universal health coverage must now be prioritized by all relevant stakeholders, particularly manufacturers of relevant inhalers. GINA is collaborating with IUATLD and other organizations to work towards a World Health Assembly Resolution to improve equitable access to affordable care, including inhaled medicines, for children, adolescents and adults with asthma.3

There is increasing concern globally about climate change, and its impact on the health and security of populations, particularly in low- and middle-income countries. The propellants in pressurized metered-dose inhalers contribute significantly to the carbon footprint of health care, particularly from use of SABAs. The GINA Track 1 approach not only provides a large reduction in exacerbations, in risk of adverse effects of oral corticosteroids, and in urgent health care compared with SABA-only treatment, but also, if implemented with a dry powder inhaler (as in most of the clinical trials), it provides a very large reduction in carbon footprint.7 GINA fully supports initiatives to encourage use of dry-powder inhalers, where they are available and clinically appropriate, and to replace harmful propellants with low-carbon alternatives. At the same time, it is essential to ensure continuity of supply of essential inhaled medicines to people in low-resource areas, to avoid exacerbating the existing serious global inequities in health care for asthma.8

Methodology

GINA SCIENCE COMMITTEE

The GINA Science Committee was established in 2002 to review published research on asthma management and prevention, to evaluate the impact of this research on recommendations in GINA documents, and to provide yearly updates to these documents. The members are recognized leaders in asthma research and clinical practice, with the scientific expertise to contribute to the task of the Committee. They are invited to serve for a limited period and in a voluntary capacity. The Committee is broadly representative of adult and pediatric disciplines, and members are drawn from diverse geographic regions. The Science Committee normally meets in person three times yearly, in conjunction with the American Thoracic Society (ATS) and European Respiratory Society (ERS) international conferences and at a stand-alone meeting, to review asthma-related scientific literature. During COVID-19, meetings of the Science Committee were held online each month, and online meetings have continued every 1–2 months since then. Statements of interest for Committee members (p.9) are found on the GINA website www.ginasthma.org.

PROCESSES FOR UPDATES AND REVISIONS OF THE GINA STRATEGY REPORT

Literature search

Details are provided on the GINA website (www.ginasthma.org/about-us/methodology). In summary, two PubMed searches are performed each year, each covering the previous 18 months, using filters established by the Science Committee. The search terms include asthma, all ages, only items with abstracts, clinical trial or meta-analysis or systematic review, and human. The search is not limited to specific PICOT (Population, Intervention, Comparison, Outcomes, Time) questions. The ‘clinical trial’ publication type includes not only conventional randomized controlled trials, but also pragmatic, real-life and observational studies. The search for systematic reviews includes, but is not limited to, those conducted using GRADE methodology.3 An additional search is conducted for guidelines documents published by other international organizations. The respiratory community is also invited to submit any other fully published peer-reviewed publications that they believe have been missed, providing that the full paper is submitted in (or translated into) English; however, because of the comprehensive process for literature review, such ad hoc submissions have rarely resulted in substantial changes to the report.
Systematic reviews

Unique among evidence-based recommendations in asthma, and rare among clinical practice guidelines in most other therapeutic areas, the GINA report is based on an ongoing twice-yearly cumulative update of the evidence base for its recommendations. GINA does not normally carry out or commission its own GRADE-based reviews, because of the current cost of such reviews, the large number of PICOT questions that would be necessary for a comprehensive practical report of this scope, and because it would limit the responsiveness of the GINA Strategy Report to emerging evidence and new developments in asthma management. However, the Science Committee reviews relevant published systematic reviews conducted with GRADE methodology as part of its normal process. GINA recommendations are constantly being reviewed and considered for update as new evidence (including GRADE-based systematic reviews on specific topics) is identified and indicates the need.

With recognition of allergen immunotherapy as an area of the GINA report that needed substantial updating, a GINA working group conducted a systematic review of articles on subcutaneous immunotherapy or sublingual immunotherapy since publication of two recent systematic reviews. From the period 01/01/2018 to 10/28/2023, the working group screened the titles and abstracts of 350 articles for quality and relevance, and undertook full-text review of 73 publications. On the basis of this systematic review, the section of the GINA report on allergen immunotherapy (p.104) has been extensively updated.

Literature screening and review

Each article identified by the literature search, after removal of duplicates and those already reviewed, is pre-screened in Covidence for relevance and major quality issues by the Editorial Assistant and by at least two non-conflicted members of the Science Committee. Each publication selected from screening is reviewed for quality and relevance by at least two members of the Science Committee, neither of whom may be an author (or co-author) or declare a conflict of interest in relation to the publication. Articles that have been accepted for publication and are online in advance of print are eligible for full text review if the approved/corrected copy-edited proof is available. All members receive a copy of all abstracts and full text publications, and non-conflicted members have the opportunity to provide comments during the pre-meeting review period. Members evaluate the abstract and the full text publication, and answer written questions in a review template about whether the scientific data impact on GINA recommendations, and if so, what specific changes should be made. In 2020, the Critical Appraisal Skills Programme (CASP) checklist was provided in the review template to assist in evaluation of systematic reviews. A list of all publications reviewed by the Committee is posted on the GINA website (www.ginasthma.org).

Discussion and decisions during Science Committee meetings

Each publication that is assessed by at least one reviewer to potentially impact on the GINA Strategy Report is discussed in a Science Committee meeting (virtual or face-to-face). This process comprises three parts, as follows:

1. Quality and relevance of original research and systematic review publications. First, the Committee considers the relevance of the publication to the GINA Strategy Report, the quality of the study, the reliability of the findings, and the interpretation of the results, based on the responses from reviewers and discussion by members of the Committee. For systematic reviews, GRADE assessments, if available, are considered. However, for any systematic review, GINA members also independently consider the clinical relevance of the question addressed by the review, and the scientific and clinical validity of the included populations and study design. For network meta-analyses, reviewers also consider the appropriateness of the comparisons (e.g., whether differences in background exacerbation risk and ICS dose were taken into account) and the generalizability of the findings. During this discussion, a member who is an author (or was involved in the study) may be requested to provide clarification or respond to questions about the study, but they may not otherwise take part in this discussion about the quality and relevance of the publication.

2. Decision about inclusion of the evidence. During this phase, the Committee decides whether the publication or its findings affect GINA recommendations or statements and should be included in the GINA Strategy Report. These decisions to modify the report or its references are made by consensus by Committee members present and, again, any member with a conflict of interest is excluded from these decisions. If the chair is an author on a publication being reviewed, an alternative chair is appointed to lead the discussion in part 1 and the decision in part 2 for that publication.
3. Discussion about related changes to the GINA Strategy Report. If the committee resolves to include the publication or its findings in the report, an author or conflicted member, if present, is permitted to take part in the subsequent discussions about and decisions on changes to the report, including the positioning of the study findings in the report and the way that they would be integrated with existing (or other new) components of the GINA management strategy. These discussions may take place immediately, or over the course of the year as new evidence emerges or as other changes to the report are agreed and implemented. The approach to managing conflicts of interest, as described above, also applies to members of the GINA Board who, ex-officio, attend GINA Science Committee meetings.

As with all previous GINA Strategy Reports, levels of evidence are assigned to management recommendations where appropriate. Current criteria (Table A) are based on those originally developed by the National Heart Lung and Blood Institute. From 2019, GINA has included in ‘Level A’ strong observational evidence that provides a consistent pattern of findings in the population for which the recommendation is made, and has also described the values and preferences that were considered in making major new recommendations. The table was updated in 2021 to avoid ambiguity about the positioning of observational data and systematic reviews.

Table A. Description of levels of evidence used in this report

<table>
<thead>
<tr>
<th>Evidence level</th>
<th>Sources of evidence</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Randomized controlled trials (RCTs), systematic reviews, observational evidence. Rich body of data</td>
<td>Evidence is from endpoints of well-designed RCTs, systematic reviews of relevant studies or observational studies that provide a consistent pattern of findings in the population for which the recommendation is made. Category A requires substantial numbers of studies involving substantial numbers of participants.</td>
</tr>
<tr>
<td>B</td>
<td>Randomized controlled trials and systematic reviews. Limited body of data</td>
<td>Evidence is from endpoints of intervention studies that include only a limited number of patients, post hoc or subgroup analysis of RCTs or systematic reviews of such RCTs. In general, Category B applies when few randomized trials exist, they are small in size, they were undertaken in a population that differs from the target population of the recommendation, or the results are somewhat inconsistent.</td>
</tr>
<tr>
<td>C</td>
<td>Nonrandomized trials or observational studies</td>
<td>Evidence is from non-randomized trials or observational studies.</td>
</tr>
<tr>
<td>D</td>
<td>Panel consensus judgment</td>
<td>This category is used only in cases where the provision of some guidance was deemed valuable but the clinical literature addressing the subject was insufficient to justify placement in one of the other categories. The Panel Consensus is based on clinical experience or knowledge that does not meet the above listed criteria.</td>
</tr>
</tbody>
</table>

New therapies and indications

The GINA Strategy Report is a global strategy document. Since regulatory approvals differ from country to country, and manufacturers do not necessarily make regulatory submissions in all countries, some GINA recommendations are likely to be off-label in some countries. This is a particular issue for pediatrics, where across different diseases, many treatment recommendations for preschool children and for children aged 6–11 years are off-label.

For new therapies, GINA's aim is to provide clinicians with evidence-based guidance about new therapies and their positioning in the overall asthma treatment strategy as soon as possible; otherwise, the gap between regulatory approval and the periodic update of many national guidelines is filled only by advertising or educational material produced by the manufacturer or distributor. For new therapies for which the GINA Science Committee considers there is sufficient good-quality evidence for safety and efficacy or effectiveness in relevant asthma populations, recommendations may be held until after approval for asthma by at least one major regulatory agency (e.g., European Medicines Agency or US Food and Drug Administration), since regulators often receive substantially more safety
and/or efficacy data on new medications than are available to GINA through peer-reviewed literature. However, decisions by GINA to make or not make a recommendation about any therapy, or about its use in any specific population, are based on the best available peer-reviewed evidence and not on labeling directives from regulators.

For existing therapies with evidence for new regimens or in different populations, the Science Committee may, where relevant, make recommendations that are not necessarily covered by regulatory indications in any country at the time, provided the Committee is satisfied with the available evidence around safety and efficacy/effectiveness. Since the GINA Strategy Report is a global strategy, the report does not refer to recommendations as being ‘off-label’. However, readers are advised that, when assessing and treating patients, they should use their own professional judgment and should also consider local and national guidelines and eligibility criteria, as well as locally licensed drug doses.

External review

Prior to publication each year, the GINA Strategy Report undergoes extensive external review by patient advocates and by asthma care experts from primary and specialist care in multiple countries. There is also continuous external review throughout the year in the form of feedback from end-users and stakeholders through the contact form on the GINA website.

Literature reviewed for GINA 2024 update

The GINA Strategy Report has been updated in 2024 following the routine twice-yearly review of the literature by the GINA Science Committee. The literature searches for ‘clinical trial’ publication types (see above), systematic reviews and guidelines identified a total of 3423 publications, of which 2961 duplicates/animal studies/non-asthma/pilot studies and protocols were removed. A total of 462 publications underwent screening of title and abstract by at least two reviewers, and 68 were screened out for relevance and/or quality. A total of 64 publications underwent full-text review by at least two members of the Science Committee, and 34 publications were subsequently discussed at meetings of the Science Committee.

A list of key changes in GINA 2024 is shown on page 19, and a copy showing tracked changes is archived on the GINA website at www.ginasthma.org/archived-reports.
WHAT’S NEW IN GINA 2024?

The GINA Strategy Report has been updated in 2024 following the routine twice-yearly cumulative review of the literature by the GINA Scientific Committee, and extensive discussion about issues relevant to clinical practice and research. A copy showing tracked changes from the GINA 2023 report is archived on the GINA website.

KEY CHANGES

- **Diagnosis of asthma:** The diagnostic flowchart for clinical practice (Box 1-1, p.25) has been revised, recognizing that, globally, a large proportion of health professionals do not have access (or timely access) to spirometry in their clinical practice. Although peak expiratory flow (PEF) is less reliable than spirometry, it is better than relying on symptoms alone. The flowchart allows for selection of different initial lung function tests, depending on local resources. The criteria for identifying variable expiratory airflow limitation (Box 1-2, p.26) have also been clarified, and more details provided about bronchodilator withholding.

 GINA again reviewed, but has not adopted, the recommendation by the American Thoracic Society and European Respiratory Society Technical Standards Committee to change the criterion for bronchodilator responsiveness from an increase from baseline of ≥12% and 200 mL to an increase from baseline of >10% predicted. The Technical Standards Committee based this recommendation on data for survival, and had explicitly avoided making any recommendation about the use of this criterion for diagnostic decisions in clinical practice. This topic will be considered by GINA again when data from additional populations, and for other asthma outcomes, have been published, to inform the implications of the proposed new criterion for diagnosis of asthma in clinical practice (p.29).

- **Cough variant asthma:** more information has been added (p.24 and p.32) about this clinical phenotype of asthma, which is common in some countries. Cough variant asthma may be difficult to distinguish from other causes of chronic cough in clinical practice, as spirometry may be normal and variable airflow limitation may be identified only from bronchial provocation testing. Some patients may later also develop wheezing and bronchodilator responsiveness. The treatment of cough variant asthma is the same as for asthma in general; the cough may return if inhaled corticosteroids (ICSs) are stopped.

- **Assessment of asthma control:** We clarify that assessment of symptom control should not be limited to the most recent 4 weeks, but that there are no validated tools for assessing symptom control over longer periods than this, and that recall-error for symptoms is common. GINA continues to emphasize that assessing symptom control is not enough – the patient’s risk factors for exacerbations (including history of exacerbations), for accelerated decline in lung function and for medication adverse effects must also be assessed (Box 2-2, p.37). While ICS markedly reduce asthma exacerbations and, in patients not taking ICS, serious exacerbations are associated with greater decline in lung function, there is no clear evidence that use of ICS per se prevents long-term development of persistent airflow limitation (p.42).

- **GINA goal of asthma treatment** (Box 3-2, p.50): The goal of asthma treatment is to achieve the best possible long-term asthma outcomes for the individual patient, including both long-term symptom control and long-term minimization of risk of exacerbations, lung function decline and medication adverse effects (including long-term adverse effects of OCS). It is also important to elicit the patient/caregiver’s goals for asthma treatment, as these may differ from medical goals.

- **Remission of asthma** (p.50): There has been extensive recent discussion in the clinical and research community about asthma remission on treatment, in the context of biologic therapy for severe asthma. Several proposed definitions and criteria for their operationalization have been published. A new section of the GINA 2024 report outlines a framework for clinical practice and research about clinical and complete (pathophysiological) remission in children and in adults, both off-treatment and on-treatment. These perspectives should also be considered for discussions with patients and parents/caregivers. The concept of asthma remission on treatment is consistent with the GINA long-term goal of asthma treatment (Box 3-2, p.50), but individual patient goals should be achievable.

- **Initial asthma treatment in adults and adolescents (Tracks 1 and 2):** Key changes have been made to the recommendations about the choice of initial treatment step for adults and adolescents in both Tracks 1 and 2, with updating of Boxes 4-4 (p.75) and 4-5 (p.76) about choice of initial treatment step. The suggested criteria at each step for initial treatment are based on evidence (where available) and on consensus, so the thresholds are not
precise. The new flowchart for initial asthma treatment (Box 4-5, p.76) includes the GINA cycle of asthma management as a reminder that asthma treatment is not just about medications.

- **For Track 1**, as-needed-only low-dose ICS-formoterol has been the preferred treatment option for both Step 1 and Step 2 since 2021, so together they are called ‘Steps 1–2’. Accordingly, the descriptions of evidence and other considerations are now also presented for Steps 1–2 together. A common question is which patients should instead start treatment at Step 3, i.e., with low-dose ICS-formoterol being taken as maintenance-and-reliever therapy (MART) rather than as-needed-only. There is no specific evidence to guide this choice, but clinical factors that are suggested for consideration of starting with MART (if permitted by local regulators) include symptoms every day, current smoking, low lung function, a recent severe exacerbation or a history of life-threatening exacerbation, impaired perception of bronchoconstriction (e.g. low initial lung function but few symptoms), severe airway hyperresponsiveness, or current exposure to a seasonal allergic trigger (p.78).

- **For Track 2**, the previous description of patients suitable for Step 1 treatment (having asthma symptoms less than twice a month and no risk factors for exacerbations) was introduced in GINA 2014 to limit the use of short-acting beta₂ agonist (SABA)-only treatment, as its risks in asthma were already well known. This criterion for Step 1 treatment has now been replaced, since GINA has recommended against SABA-only treatment since 2019. Another consideration for choosing between Step 1 and Step 2 treatment is that, although maintenance ICS almost halved the risk of serious exacerbations in patients with symptoms ≤2 days/week in a clinical trial, such patients would be very unlikely to take daily ICS if it was prescribed in clinical practice. Therefore, for patients with such infrequent symptoms, taking ICS whenever SABA is taken (Track 2, Step 1) is preferred over daily ICS plus as-needed SABA (Track 2, Step 2) to ensure that patients receive at least some ICS, rather than taking SABA alone.

- **GINA 2024 treatment figure for adults and adolescents**, Box 4-6, p.77. There are no major changes from 2023 in the main treatment figure. In the arrowed circle (also Box 3-3, p.53), ‘asthma medications’ has been changed to ‘asthma medications including ICS’ as a reminder that all patients with asthma should receive ICS-containing therapy. New short versions of the main treatment figure are shown at the start of the sections of text about Steps 1–4 for Track 1 (Box 4-7, p.78) and Track 2 (Box 4-9, p.86) respectively.

- **Medications and doses for Track 1 anti-inflammatory reliever (AIR) therapy**: Following requests from clinicians, Box 4-8, p.84 has been expanded to show all the relevant ICS-formoterol devices (dry-powder inhalers [DPIs] and pressurized metered-dose inhalers [pMDIs]) and doses for AIR therapy by age-group and treatment step, with the corresponding dosing regimens and maximum number of inhalations in a single day. More devices and doses may become available in the future.

- **Beclometasone-formoterol for MART** (Box 4-7, p.78). There is evidence from randomized controlled trials and meta-analyses in approximately 40,000 patients for the long-term safety and efficacy of as-needed budesonide-formoterol up to a maximum total of 72 mcg formoterol (54 mcg delivered dose) in a single day (total of as-needed and maintenance doses, if used) for adults and adolescents, together with data from earlier randomized controlled trials with as-needed formoterol. Based on this extensive evidence, GINA suggests that the same maximum total dose of formoterol (with ICS) in a single day (72 mcg metered dose) should also apply for adults and adolescents prescribed MART with beclometasone-formoterol 100/6 mcg, i.e. a maximum total of 12 inhalations in a single day. For children 6–11 years prescribed MART with budesonide-formoterol, the maximum recommended total dose of formoterol (with ICS) in a single day is 48 mcg metered dose (36 mcg delivered dose). Most patients need far fewer doses in any day than the maximum doses recommended.

- **ICS-formoterol as reliever with other ICS-LABAs**: GINA previously recommended against use of ICS-formoterol as the reliever for patients using maintenance treatment with a combination of ICS and long-acting beta₂ agonist (LABA) with a non-formoterol LABA, because of lack of evidence for safety or efficacy with this approach (p.69). This recommendation is now supported by an analysis suggesting that taking two different LABAs in this way may be associated with increased adverse events (p.82).

- **Leukotriene receptor antagonists**: Wherever montelukast is mentioned throughout the report, there is a reminder to advise patients/parents/caregivers about the potential risk of neuropsychiatric adverse events associated with this medication. These include new-onset nightmares and behavioral problems and, in some cases, suicidal ideation.
• **High-dose inhaled corticosteroids:** Wherever this is suggested as a treatment option throughout the report for adults and adolescents, it is again stated that this is only for short-term use, e.g., 3–6 months, to minimize the potential for adverse effects.

• **Add-on long-acting muscarinic antagonists (LAMA):** Subgroup analyses suggest that the reduction in severe exacerbations requiring OCS associated with triple therapy (ICS+LABA+LAMA) was seen primarily in patients with a history of asthma exacerbations in the previous year (p.91).

• **Severe asthma with good response to Type 2-targeted therapy:** Advice about reduction in asthma therapy in patients who have had a good asthma response to therapy targeting Type 2 inflammation has been updated and clarified, with the highest priority to reduce and cease maintenance oral corticosteroids (OCS), if used. Some previous randomized controlled trials included a rapid ICS dose reduction in patients on biological therapies in order to induce loss of asthma control, but this is not relevant to clinical practice. A randomized controlled trial in adult patients with a good response to benralizumab found that, with randomization to MART, most could have their maintenance ICS-formoterol dose slowly reduced. However, the findings suggest that in patients with severe asthma, maintenance doses of ICS-formoterol should not be stopped (p.156). This study also provides support for use of MART in patients taking Step 5 treatment. Additional advice about stepping down treatment once asthma is well controlled is in Box 4-13 (p.102).

• **Initial asthma treatment in children 6–11 years:** Boxes 4-10 (p.94) and 4-11 (p.95) about initial asthma treatment in children 6–11 years have been updated. These recommendations are based on evidence (where available) and on consensus. The flowchart includes the GINA cycle of asthma management, as a reminder that asthma treatment is not just about medications. Symptom levels and lung function prompting a particular starting treatment step are similar to those for adults and adolescents.

In the text about treatment steps, additional details about studies, populations and outcomes in the 6–11 years age group have been added, including the ICS doses used in the studies of taking ICS whenever SABA is taken (Step 1, p.97).

• **Low, medium and high doses of inhaled corticosteroids.** Box 4-2 (p.71) lists low, medium and high doses of various ICS, alone or in combination with LABA. GINA has emphasized for many years that this table does not imply potency equivalence, but this continues to be assumed. For clarity, an example has been added: if you switch a patient’s treatment from a ‘medium’ dose of one ICS to a ‘medium’ dose of another ICS, this may represent a decrease (or increase) in potency, so the patient’s asthma may become unstable (or they may be at increased risk of adverse effects). After any change of treatment or inhaler device, patients should be monitored to ensure stability.

• **Allergen immunotherapy.** The section on allergen immunotherapy (p.104) has been updated following a systematic review of publications about subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) for asthma by a GINA Science Committee working group. Information is also included about the quality assurance, personnel, training, safety and administrative protocols that must be observed for preparation and safe delivery of SCIT. For patients with severe asthma, allergen immunotherapy may be considered as an add-on treatment, but only after asthma symptoms and exacerbations have been controlled.

Other updates in GINA 2024

• **Mild asthma:** Further advice has been provided on language about mild and severe asthma (p.43). The term ‘mild asthma’ is a retrospective label, so it cannot be used to decide which patients are suitable to receive Step 1 or Step 2 treatment.

• **Pulmonary rehabilitation for asthma:** There is now evidence from a systematic review and meta-analysis for the benefit of structured outpatient pulmonary rehabilitation programs in improving functional exercise capacity and quality of life for patients with asthma (p.60). Pulmonary rehabilitation also continues to be recommended for patients with asthma who have dyspnea due to persistent airflow limitation (Section 7, p.131).

• **Role of FeNO:** Further evidence has emerged of differences in inflammatory biomarkers, including fractional concentration of exhaled nitric oxide (FeNO), in patients with obesity (p.31 and p.72). The largest study to date of FeNO-guided management of asthma, conducted in pregnant women, found no reduction in asthma exacerbations or perinatal outcomes compared with usual care (p.103). The main role of FeNO in clinical practice continues to be to help guide treatment decisions in patients with severe asthma (p.143).
• **Prevention of respiratory infections**: More information is provided about vaccinations against respiratory syncytial virus (RSV), pneumococcus and pertussis (p.106), and interventions to reduce RSV infections in infants (p.206).

• **Chronic rhinosinusitis with/without nasal polyps**: Information about treatment outcomes in patients with both asthma and chronic rhinosinusitis has been updated based on latest evidence (p.120).

• **Acute asthma**: Although there is a strong emphasis throughout the GINA report on minimizing OCS use to reduce long-term cumulative adverse effects, OCS are essential in management of acute severe asthma. However, the occurrence of any severe exacerbation should be a prompt to assess the patient thoroughly, optimize their asthma treatment, and consider referral for expert advice, to reduce the risk of another exacerbation occurring (Box 9-3, p.165). Evidence about use of dexamethasone has been updated based on the latest evidence (p.173).

• **Prevention of occupational asthma**: This new section has been added to section 13 (Primary prevention of asthma, p.208).

Topics still under discussion

• Assessment of symptom control: GINA continues to seek evidence relevant to the assessment of symptom control in patients whose reliever is ICS-formoterol.

• Severe asthma in children 6–11 years: a pocket guide and decision tree are in development.

• Efficacy and safety of high dose ICS for exacerbations of asthma or wheezing in preschool children: a systematic review is underway.

• Management of acute asthma in hospital and intensive care unit is under discussion

• Digital formats for GINA resources: investigation of digital options is ongoing, with the aim of facilitating access to GINA resources on portable devices and smartphones. Presentation of the GINA Strategy Report as an eBook is not feasible at present because bibliographic referencing programs are not yet compatible with any of the current e-Book platforms, so references would need to be re-entered manually every year.

World Asthma Day 2024

GINA’s theme for World Asthma Day, 7 May 2024 is “Asthma education empowers. Information is key”.

Structure and layout

We have updated the structure and layout of the report. For asthma medications (Section 4), information is presented first for Track 1 (p.78) then for Track 2 (p.86) in adults and adolescents, followed by medications for children 6–11 years (p.96), with detailed information about difficult-to-treat and severe asthma in Section 8 (p.139). A glossary of medication classes has been added as a Supplement (p.212).

For best functionality of the GINA Report, download the pdf. All page numbers and citation numbers are hyperlinked. In your pdf reader, if you add the ‘previous view’ button to your toolbar, it is easy to go back and forth between text, references and linked sections of the report.

Note: clarifications and corrections 22 May 2024

• **Box 4-8** (p.85): after launch of the 2024 report, we became aware that some formulations of budesonide-formoterol pMDIs, not available in all countries, were being misread. A note has been added to each of the relevant rows of the table, to emphasize that the stated numbers of inhalations apply ONLY to the listed formulations, which have a lower formoterol dose (3 mcg metered dose, 2.25 mcg delivered dose) than in all other budesonide-formoterol formulations.

• **Box 4-8** (p.85): The doses of budesonide-formoterol for GINA Track 1 have been further clarified in the footnote: budesonide-formoterol 400/12 [320/9] mcg should not be used as an anti-inflammatory reliever, and, for adults and adolescents, GINA does not suggest use of budesonide-formoterol 100/6 [80/4.5] mcg as an anti-inflammatory reliever, since most evidence is with 200/6 [160/4.5] mcg.

• **Box 8-5** (p.145): “do not stop ICS” corrected to “do not stop maintenance ICS-LABA”

• Some minor typographical errors have been corrected.
1. Definition, description, and diagnosis of asthma in adults, adolescents and children 6–11 years

KEY POINTS

What is asthma?

Asthma is a heterogeneous disease, usually characterized by chronic airway inflammation. It is defined by the history of respiratory symptoms, such as wheeze, shortness of breath, chest tightness and cough, that vary over time and in intensity, together with variable expiratory airflow limitation. One or more symptoms (e.g., cough) may predominate. Airflow limitation may later become persistent.

Asthma is usually associated with airway hyperresponsiveness and airway inflammation, but these are not necessary or sufficient to make the diagnosis.

Recognizable clusters of demographic and clinical characteristics are called ‘clinical asthma phenotypes’. In most instances, these do not correlate strongly with specific pathological processes or treatment responses. However, biomarkers reflecting pathophysiological processes are useful in the assessment of difficult-to-treat asthma and treatment of severe asthma.

How is asthma diagnosed?

The diagnosis of asthma is based on the history of characteristic symptom patterns and evidence of variable expiratory airflow limitation. This should be documented from bronchodilator reversibility testing or other tests. More than one test may be needed to confirm asthma or exclude alternative causes of respiratory symptoms.

Many health professionals do not have access to spirometry. If so, peak expiratory flow (PEF) should be used, rather than relying on symptoms alone.

Test before treating, wherever possible, i.e., document the evidence for the diagnosis of asthma before starting inhaled corticosteroid (ICS)-containing treatment, as it is often more difficult to confirm the diagnosis once asthma control has improved.

Additional or alternative strategies may be needed to confirm the diagnosis of asthma in particular populations, including patients already on ICS-containing treatment, the elderly, patients presenting with cough as the only symptom (including cough variant asthma), and patients in low-resource settings.

DEFINITION OF ASTHMA

Asthma is a heterogeneous disease, usually characterized by chronic airway inflammation. It is defined by the history of respiratory symptoms, such as wheeze, shortness of breath, chest tightness and cough, that vary over time and in intensity, together with variable expiratory airflow limitation.

This definition was reached by consensus, based on consideration of the characteristics that are typical of asthma before ICS-containing treatment is commenced, and that distinguish it from other respiratory conditions. However, airflow limitation may become persistent later in the course of the disease.

DESCRIPTION OF ASTHMA

Asthma is a common, chronic respiratory disease affecting 1–29% of the population in different countries. Asthma is characterized by variable symptoms of wheeze, shortness of breath, chest tightness and/or cough, and by variable expiratory airflow limitation. Both symptoms and airflow limitation characteristically vary over time and in intensity. These variations are often triggered by factors such as exercise, allergen or irritant exposure, change in weather, or viral respiratory infections.
Symptoms and airflow limitation may resolve spontaneously or in response to medication, and may sometimes be absent for weeks or months at a time. On the other hand, patients can experience episodic flare-ups (exacerbations) of asthma that may be life-threatening and carry a significant burden to patients and the community. The majority of asthma deaths occur in low- and middle-income countries. Asthma is usually associated with airway hyperresponsiveness to direct or indirect stimuli, and with chronic airway inflammation. These features usually persist, even when symptoms are absent or lung function is normal, but may normalize with treatment.

Asthma phenotypes

Asthma is a heterogeneous disease, with different underlying disease processes. Recognizable clusters of demographic, clinical and/or pathophysiological characteristics are often called ‘asthma phenotypes’. In patients with more severe asthma, some phenotype-guided treatments are available. However, except in patients with severe asthma, no strong relationship has been found between specific pathological features and particular clinical patterns or treatment responses. More research is needed to understand the clinical utility of phenotypic classification in asthma.

Many clinical phenotypes of asthma have been identified. Some of the most common are:

- **Allergic asthma**: this is the most easily recognized asthma phenotype, which often commences in childhood and is associated with a past and/or family history of allergic disease such as eczema, allergic rhinitis, or food or drug allergy. Examination of the induced sputum of these patients before treatment often reveals eosinophilic airway inflammation. Patients with this asthma phenotype usually respond well to ICS treatment.

- **Non-allergic asthma**: some patients have asthma that is not associated with allergy. The cellular profile of the sputum of these patients may be neutrophilic, eosinophilic or contain only a few inflammatory cells (paucigranulocytic). Patients with non-allergic asthma often demonstrate a lesser short-term response to ICS.

- **Cough variant asthma and cough predominant asthma**: in some children and adults, cough may be the only symptom of asthma, and evidence of variable airflow limitation may be absent apart from during bronchial provocation testing. Some patients subsequently also develop wheezing and bronchodilator responsiveness. ICS-containing treatment is effective. For more details, see p.32.

- **Adult-onset (late-onset) asthma**: some adults, particularly women, present with asthma for the first time in adulthood. These patients tend to be non-allergic, and often require higher doses of ICS or are relatively refractory to corticosteroid treatment. Occupational asthma (i.e., asthma due to exposures at work) should be ruled out in patients presenting with adult-onset asthma.

- **Asthma with persistent airflow limitation**: some patients with long-standing asthma develop airflow limitation that is persistent or incompletely reversible (see p.29). This is thought to be due to airway wall remodeling. See Chapter 5 (p.108) for more details about patients with features of both asthma and chronic obstructive pulmonary disease (COPD).

- **Asthma with obesity**: some obese patients with asthma have prominent respiratory symptoms and a different pattern of airway inflammation, with little eosinophilic inflammation.

There is little evidence about the natural history of asthma after diagnosis, but one longitudinal study showed that approximately 16% of adults with recently diagnosed asthma may experience clinical remission (no symptoms or asthma medication for at least 1 year) within 5 years. See p.50 for more information about remission.

MAKING THE INITIAL DIAGNOSIS

Making the diagnosis of asthma before treatment is started, as shown in Box 1-1 (p.25) and Box 1-2 (p.26) is based on identifying both a characteristic pattern of respiratory symptoms such as wheezing, shortness of breath (dyspnea), chest tightness or cough, and variable expiratory airflow limitation. The pattern of symptoms is important, as respiratory symptoms may be due to acute or chronic conditions other than asthma (see Box 1-3, p.27). If possible, the evidence supporting a diagnosis of asthma (Box 1-2, p.26) should be documented when the patient first presents, as the features that are characteristic of asthma may improve spontaneously or with treatment. As a result, it is often more difficult to confirm a diagnosis of asthma once the patient has been started on ICS-containing treatment, because this reduces variability of both symptoms and lung function (see Box 1-4, p.30). GINA recognizes that, globally, many health professionals lack access (or ready access) to spirometry, so advice has also been provided for using PEF in asthma diagnosis.
Box 1-1. Diagnostic flowchart for adults, adolescents and children 6–11 years in clinical practice

This flowchart is for patients presenting with chronic or recurrent respiratory symptoms in clinical practice. See Box 9-4 (p.167) and Box 9-6 (p.171) for information on patients presenting with an acute exacerbation.

Peak expiratory flow (PEF) is less reliable than spirometry, but it is better than having no objective measurement of lung function. When measuring PEF, use the same meter each time as the value may vary by up to 20% between different meters, and use only the highest of three readings. For other abbreviations see p.11. For more information about diagnosis, see text and Box 1-2, p.26.
Box 1-2. Criteria for initial diagnosis of asthma in adults, adolescents, and children 6–11 years

1. HISTORY OF TYPICAL VARIABLE RESPIRATORY SYMPTOMS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Symptoms or features that support the diagnosis of asthma</th>
</tr>
</thead>
</table>
| Wheeze, shortness of breath, chest tightness and/or cough (Descriptors may vary between cultures and by age) | • Symptoms occur variably over time and vary in intensity
• Symptoms are often worse at night or on waking
• Symptoms are often triggered by exercise, laughter, allergens, cold air
• Symptoms often appear or worsen with viral infections |

2. CONFIRMED VARIABLE EXPIRATORY AIRFLOW LIMITATION

<table>
<thead>
<tr>
<th>Feature</th>
<th>Considerations, definitions, criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive variability in expiratory lung function (one or more of the following):</td>
<td>The greater the variations, or the more occasions excess variation is seen, the more confident the diagnosis of asthma. If initially negative, tests can be repeated during symptoms or in the early morning. If spirometry is not possible, PEF† may be used, but it is less reliable.</td>
</tr>
</tbody>
</table>
| Positive bronchodilator (BD) responsiveness (reversibility) test with spirometry (or PEF†) | **Adults:** increase from baseline in FEV₁ or FVC of ≥12% and ≥200 mL, with greater confidence if the increase is ≥15% and ≥400 mL; or increase in PEF† ≥20% if spirometry is not available.

Children: increase from baseline in FEV₁ of ≥12% predicted (or in PEF† of ≥15%).

Measure change 10–15 minutes after 200–400 mcg salbutamol (albuterol) or equivalent, compared with pre-BD readings. Positive test more likely if BD withheld before test: SABA ≥4 hours, long-acting bronchodilators 24–48 hours (see below). |
| Excessive variability in twice-daily PEF over 2 weeks* | **Adults:** average daily diurnal PEF variability >10%*
Children: average daily diurnal PEF variability >13%* |
| Increase in lung function after 4 weeks of treatment | **Adults:** increase from baseline in FEV₁ by ≥12% and ≥200 mL (or PEF† by ≥20%) after 4 weeks of daily ICS-containing treatment
Children: increase from baseline in FEV₁ of ≥12% predicted (or in PEF† of ≥15%). |
| Positive bronchial challenge test | **Adults:** Fall from baseline in FEV₁ of ≥20% with standard doses of methacholine, or ≥15% with standardized hyperventilation, hypertonic saline or mannitol challenge, or >10% and >200 mL with standardized exercise challenge.
Children: fall from baseline in FEV₁ of >12% predicted (or fall in PEF† >15%) with standardized exercise challenge.
If FEV₁ decreases during a challenge test, check that FEV₁/FVC ratio has also decreased, since incomplete inhalation, e.g., due to inducible laryngeal obstruction or poor effort, can result in a false reduction in FEV₁. |
| Excessive variation in lung function between visits (good specificity but poor sensitivity) | **Adults:** variation in FEV₁ of ≥12% and ≥200 mL (or in PEF† of ≥20%) between visits.
Children: variation in FEV₁ of ≥12% (or ≥15% in PEF†) between visits |

See list of abbreviations (p.11). See Box 1-3 (p.27) for how to confirm the diagnosis in patients already taking ICS-containing treatment. See p.31 for role of FeNO in asthma diagnosis. For bronchodilator responsiveness testing, use either a SABA or a rapid-acting ICS-LABA; see p.29. Withholding periods: Short-acting beta; agonists: ≥4 hours; formoterol, salmeterol: 24 hours; indacaterol, vilanterol: 36 hours; tiotropium, umeclidinium, aclidinium, glycopyrronium: 36–48 hours.

†For each PEF measurement, use the highest of 3 readings. Use the same PEF meter each time, as PEF may vary by up to 20% between different meters. *Daily diurnal PEF variability is calculated from twice daily PEF as (day’s highest minus day’s lowest)
divided by (mean of day’s highest and lowest), averaged over two weeks. BD responsiveness may be lost temporarily during severe exacerbations or viral infections, and airflow limitation may become persistent over time.

If reversibility is not present at initial presentation, the next step depends on the availability of other tests and the urgency of the need for treatment. In a situation of clinical urgency, asthma treatment may be commenced and diagnostic testing arranged within the next few weeks (Box 1-4, p.30), but other conditions that can mimic asthma (Box 1-3, p.27) should be considered, and the diagnosis confirmed as soon as possible.

Patterns of respiratory symptoms that are characteristic of asthma

The following features are typical of asthma and, if present, increase the probability that the patient has asthma.

Respiratory symptoms of wheeze, shortness of breath, cough and/or chest tightness:

- Symptoms are often worse at night or in the early morning.
- Symptoms vary over time and in intensity.
- Symptoms are triggered by viral infections (colds), exercise, allergen exposure, changes in weather, laughter, or irritants such as car exhaust fumes, smoke or strong smells.

The following features decrease the probability that respiratory symptoms are due to asthma:

- Chronic production of sputum
- Shortness of breath associated with dizziness, light-headedness or peripheral tingling (paresthesia)
- Chest pain
- Exercise-induced dyspnea with noisy inspiration.

DIFFERENTIAL DIAGNOSIS

The differential diagnosis in a patient with suspected asthma varies with age (Box 1-3, p.27). Any of these alternative diagnoses may also be found together with asthma. See Section 6 (p.117) for management of multimorbidity.

Box 1-3. Differential diagnosis of asthma in adults, adolescents and children 6–11 years

<table>
<thead>
<tr>
<th>Age</th>
<th>If the symptoms or signs below are present, consider…</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>6–11 years</td>
<td>Sneezing, itching, blocked nose, throat-clearing</td>
<td>Chronic upper airway cough syndrome</td>
</tr>
<tr>
<td></td>
<td>Sudden onset of symptoms, unilateral wheeze</td>
<td>Inhaled foreign body</td>
</tr>
<tr>
<td></td>
<td>Recurrent infections, productive cough</td>
<td>Bronchiectasis</td>
</tr>
<tr>
<td></td>
<td>Recurrent infections, productive cough, sinusitis</td>
<td>Primary ciliary dyskinesia</td>
</tr>
<tr>
<td></td>
<td>Cardiac murmurs</td>
<td>Congenital heart disease</td>
</tr>
<tr>
<td></td>
<td>Pre-term delivery, symptoms since birth</td>
<td>Bronchopulmonary dysplasia</td>
</tr>
<tr>
<td></td>
<td>Excessive cough and mucus production, gastrointestinal symptoms</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>12–39 years</td>
<td>Sneezing, itching, blocked nose, throat-clearing</td>
<td>Chronic upper airway cough syndrome</td>
</tr>
<tr>
<td></td>
<td>Dyspnea, inspiratory wheezing (stridor)</td>
<td>Inducible laryngeal obstruction</td>
</tr>
<tr>
<td></td>
<td>Dizziness, paresthesia, sighing</td>
<td>Hyperventilation, dysfunctional breathing</td>
</tr>
<tr>
<td></td>
<td>Productive cough, recurrent infections</td>
<td>Bronchiectasis</td>
</tr>
<tr>
<td></td>
<td>Excessive cough and mucus production</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td></td>
<td>Cardiac murmurs</td>
<td>Congenital heart disease</td>
</tr>
<tr>
<td>Symptom</td>
<td>Condition</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Shortness of breath, family history of early emphysema</td>
<td>Alpha-1-antitrypsin deficiency</td>
<td></td>
</tr>
<tr>
<td>Sudden onset of symptoms</td>
<td>Inhaled foreign body</td>
<td></td>
</tr>
<tr>
<td>40+ years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspnea, inspiratory wheezing (stridor)</td>
<td>Inducible laryngeal obstruction</td>
<td></td>
</tr>
<tr>
<td>Dizziness, paresthesia, sighing</td>
<td>Hyperventilation, dysfunctional breathing</td>
<td></td>
</tr>
<tr>
<td>Cough, sputum, dyspnea on exertion, smoking or noxious exposure</td>
<td>COPD*</td>
<td></td>
</tr>
<tr>
<td>Productive cough, recurrent infections</td>
<td>Bronchiectasis</td>
<td></td>
</tr>
<tr>
<td>Dyspnea with exertion, nocturnal symptoms, ankle edema</td>
<td>Cardiac failure</td>
<td></td>
</tr>
<tr>
<td>Treatment with angiotensin-converting enzyme (ACE) inhibitor</td>
<td>Medication-related cough</td>
<td></td>
</tr>
<tr>
<td>Dyspnea with exertion, non-productive cough, finger clubbing</td>
<td>Parenchymal lung disease</td>
<td></td>
</tr>
<tr>
<td>Sudden onset of dyspnea, chest pain</td>
<td>Pulmonary embolism</td>
<td></td>
</tr>
<tr>
<td>Dyspnea, unresponsive to bronchodilators</td>
<td>Central airway obstruction</td>
<td></td>
</tr>
<tr>
<td>All ages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic cough, hemoptysis, dyspnea; and/or fatigue, fever, (night)</td>
<td>Tuberculosis</td>
<td></td>
</tr>
<tr>
<td>sweats, anorexia, weight loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolonged paroxysms of coughing, sometimes stridor</td>
<td>Pertussis</td>
<td></td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11). *See Section 7 (p.131). Any of the above conditions may also contribute to respiratory symptoms in patients with confirmed asthma.

Why is it important to confirm the diagnosis of asthma?

This is important to avoid unnecessary treatment or over-treatment, and to avoid missing other important diagnoses. In adults with an asthma diagnosis in the last 5 years, one-third could not be confirmed as having asthma after repeated testing over 12 months with staged withdrawal of ICS-containing treatment. The diagnosis of asthma was less likely to be confirmed in patients who did not undergo lung function testing at the time of initial diagnosis. Some patients (2%) had serious cardiorespiratory conditions that had been misdiagnosed as asthma.29 It is important to confirm the diagnosis of asthma in people with suggestive respiratory symptoms; a study in Canada found that patients with undiagnosed asthma had worse health-related quality of life and more unscheduled healthcare visits than those without asthma, and similar to those with diagnosed asthma.30

History and family history

Commencement of respiratory symptoms in childhood, a history of allergic rhinitis or eczema, or a family history of asthma or allergy, increases the probability that the respiratory symptoms are due to asthma. However, these features are not specific for asthma and are not seen in all asthma phenotypes. Patients with allergic rhinitis or atopic dermatitis should be asked specifically about respiratory symptoms.

Physical examination

Physical examination in people with asthma is often normal. The most frequent abnormality is expiratory wheezing (rhonchi) on auscultation, but this may be absent or only heard on forced expiration. Wheezing may also be absent during severe asthma exacerbations, due to severely reduced airflow (so called ‘silent chest’), but at such times, other physical signs of respiratory failure are usually present. Wheezing may also be heard with inducible laryngeal obstruction, COPD, respiratory infections, tracheomalacia, or inhaled foreign body (when wheezing may be unilateral). Crackles (crepitations) and inspiratory wheezing are not features of asthma. Examination of the nose may reveal signs of allergic rhinitis or nasal polyps.
Lung function testing to document variable expiratory airflow limitation

Asthma is characterized by variable expiratory airflow limitation, i.e., expiratory lung function varies over time, and in magnitude, to a greater extent than in healthy populations. In asthma, lung function may vary over time between completely normal and severely obstructed in the same patient. Poorly controlled asthma is associated with greater variability in lung function than well-controlled asthma.38

Lung function is most reliably assessed by spirometry testing, with assessment of forced expiratory volume in 1 second (FEV₁) and the ratio of FEV₁ to forced vital capacity (FEV₁/FVC). Spirometry testing should be carried out by well-trained operators with well-maintained and regularly calibrated equipment,31 with an inline filter to protect against transmission of infection.32 However, globally, many clinicians do not have ready (or any) access to spirometry. In this context assessment of PEF, although less reliable, is better than no objective measurement of lung function. If PEF is used, the best of 3 measurements should be used each time, and the same meter should be used for follow-up testing, as measurements may differ from meter to meter by up to 20%.33

A reduced FEV₁ or PEF may be found with many other lung diseases, or poor technique with inadequate inhalation. This may be due to lack of effort or to inducible laryngeal obstruction. Reduced FEV₁/FVC (compared with baseline or compared with the lower limit of normal) indicates expiratory airflow limitation. Many spirometers now include age-specific predicted values for lower limit of normal in their software.34

In clinical practice, once an obstructive defect has been confirmed, variation in airflow limitation is generally assessed from variation in FEV₁ or PEF. ‘Variability’ refers to improvement and/or deterioration in symptoms and lung function. Excessive variability may be identified over the course of one day (diurnal variability), from day to day, from visit to visit, or seasonally, or from a responsiveness test.

Responsiveness (previously called ‘reversibility’)31 generally refers to rapid improvements in FEV₁ (or PEF), measured within minutes after inhalation of a rapid-acting bronchodilator such as 200–400 mcg salbutamol, or more sustained improvement over days or weeks after the introduction of ICS treatment.35

In a patient with typical or suggestive respiratory symptoms, obtaining evidence of excessive variability in expiratory lung function is an essential component of the diagnosis of asthma. Some specific examples are:

- An increase in lung function 10–15 minutes after administration of a bronchodilator, or after a trial of ICS-containing treatment; lung function may improve gradually, so it should be assessed after at least 4 weeks
- A decrease in lung function after exercise (spontaneous or standardized) or during a bronchial provocation test
- Variation in lung function beyond the normal range when it is repeated over time, either on separate visits, or on twice-daily home monitoring over at least 1–2 weeks.

Specific criteria for demonstrating excessive variability in expiratory lung function are listed in Box 1-2 (p.26). A decrease in FEV₁ or PEF during a respiratory infection, while commonly seen in asthma, does not necessarily indicate that a person has asthma, as it may also be seen in otherwise healthy individuals or people with COPD.

How much variation in expiratory airflow is consistent with asthma?

Bronchodilator responsiveness: There is overlap in bronchodilator responsiveness and other measures of variation between health and disease.38 In a patient with respiratory symptoms, the greater the variations in their lung function, or the more times excess variation is seen, the more likely the diagnosis is to be asthma (Box 1-2, p.26). Generally, in adults with respiratory symptoms typical of asthma, an increase or decrease in FEV₁ of ≥12% and ≥200 mL from baseline, or (if spirometry is not available) a change in PEF of at least 20%, is accepted as being consistent with asthma. A Technical Standards Committee recommended changing the criterion for a positive bronchodilator responsiveness test from an increase from baseline in FEV₁ or FVC of ≥12% and >200 mL (as at present) to an increase from baseline of >10% of the patient’s predicted value.32 This recommendation was based on data for survival, and the Technical Standards Committee avoided making any recommendation about the use of this criterion for diagnostic decisions in clinical practice. This topic will be considered again by GINA when more data are available, including comparison with other diagnostic tests for asthma.
Diurnal PEF variability is calculated from twice daily readings as the daily amplitude percent mean, i.e.:

\[
\frac{[\text{Day's highest} - \text{day's lowest}]}{\text{mean of day's highest and lowest}} \times 100
\]

Then the average of each day's value is calculated over 1–2 weeks. The upper 95% confidence limit of diurnal variability (amplitude percent mean) from twice daily readings is 9% in healthy adults, and 12.3% in healthy children so, in general, diurnal variability >10% for adults and >13% for children is regarded as excessive.

If FEV₁ is within the predicted normal range when the patient is experiencing symptoms, this reduces the probability that the symptoms are due to asthma. However, patients whose baseline FEV₁ is >80% predicted can have a clinically important increase in lung function with bronchodilator or ICS-containing treatment. Predicted normal ranges (especially for PEF) have limitations, so the patient’s own best reading (‘personal best’) is recommended as their ‘normal’ value.

Box 1-4. Steps for confirming the diagnosis of asthma in a patient already taking ICS-containing treatment

<table>
<thead>
<tr>
<th>Current status</th>
<th>Steps to confirm the diagnosis of asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable respiratory symptoms and variable airflow limitation</td>
<td>Diagnosis of asthma is confirmed. Assess the level of asthma control (Box 2-2A and Box 2-2B, p.37) and review ICS-containing treatment (Box 4-6, p.77; Box 4-12, p.96.)</td>
</tr>
</tbody>
</table>
| Variable respiratory symptoms but no variable airflow limitation | Consider repeating spirometry (or PEF*) after withholding bronchodilator (4 hrs for SABA, 24–48 hrs for long-acting bronchodilators (see below) or during symptoms. Check between-visit variability of FEV₁, and bronchodilator responsiveness. If still normal, consider other diagnoses (Box 1-3, p.27).
 If FEV₁ (or PEF) is >70% predicted: consider stepping down ICS-containing treatment (see Box 1-5, p.32) and reassess in 2–4 weeks, then consider bronchial provocation test or repeating bronchodilator responsiveness test.
 If FEV₁ (or PEF) is <70% predicted: consider starting or stepping up maintenance ICS-containing treatment for 3 months (Box 4-6, p.77), then reassess symptoms and lung function. If no response, resume previous ICS dose and refer patient for diagnosis and investigation. |
| Few respiratory symptoms, normal lung function, and no variable airflow limitation | Consider repeating BD responsiveness test again after withholding bronchodilator as above or during symptoms. If normal, consider investigation for alternative diagnoses (Box 1-3, p.27).
 Consider stepping down ICS-containing treatment (see Box 1-5, p.32):
 * If symptoms emerge and lung function fails: asthma is confirmed. Step up ICS-containing treatment to previous lowest effective dose.
 * If no change in symptoms or lung function at lowest controller step: consider ceasing maintenance ICS-containing treatment, or switching to as-needed-only ICS-formoterol, and monitor patient closely for at least 12 months (Box 4-13, p.102). |
| Persistent shortness of breath and persistent airflow limitation | Consider stepping up ICS-containing treatment for 3 months (Box 4-6, p.77), then reassess symptoms and lung function. If no response, resume previous ICS dose and refer patient for further investigation and management, or manage as for patients with features of both asthma and COPD (Section 7, p.131). |

See list of abbreviations (p.11). ‘Variable airflow limitation’ refers to expiratory airflow. Withholding period for long-acting bronchodilators: 24 hours for formoterol, salmeterol; 36 hours for indacaterol, vilanterol; 36-48 hours for tiotropium, umclidinium, aclidinium, glycopyrronium. *If spirometry is not possible, PEF may be used, but it is less reliable. Use the same PEF meter each time, as PEF may vary by up to 20% between different meters. For each PEF measurement, use the highest of 3 readings.

When can variable expiratory airflow limitation be documented?

If possible, evidence of variable expiratory airflow limitation should be documented before treatment is started. This is because variability usually decreases with ICS treatment as lung function improves. In addition, any increase in lung function after initiating ICS-containing treatment can help to confirm the diagnosis of asthma. Bronchodilator responsiveness may not be present between symptoms, during viral infections or if the patient has used a beta₂...
agonist within the previous few hours; and in some patients with asthma, airflow limitation may become persistent or irreversible over time.

If neither spirometry nor PEF is available, or variable expiratory airflow limitation is not documented, a decision about whether to investigate further or start ICS-containing treatment immediately depends on clinical urgency and access to other tests. Box 1-4 (p.30) describes how to confirm the diagnosis of asthma in a patient already taking ICS-containing treatment.

Other tests that may be used in diagnosis of asthma

Bronchial provocation tests

One option for documenting variable expiratory airflow limitation is to refer the patient for bronchial provocation testing to assess airway hyperresponsiveness. Challenge agents include inhaled methacholine, histamine, exercise, eucapnic voluntary hyperventilation or inhaled mannitol. These tests are moderately sensitive for a diagnosis of asthma but have limited specificity. For example, airway hyperresponsiveness to inhaled methacholine has been described in patients with allergic rhinitis, cystic fibrosis, bronchopulmonary dysplasia and COPD. This means that a negative test in a patient not taking ICS can help to exclude asthma, but a positive test does not always mean that a patient has asthma – the pattern of symptoms (Box 1-2, p.26) and other clinical features (Box 1-3, p.27) must also be considered.

Allergy tests

The presence of atopy increases the probability that a patient with respiratory symptoms has allergic asthma, but this is not specific for asthma nor is it present in all asthma phenotypes. Atopic status can be identified by skin prick testing or by measuring the level of specific immunoglobulin E (sIgE) in serum. Skin prick testing with common environmental allergens is simple and rapid to perform and, when performed by an experienced tester with standardized extracts, is inexpensive and has a high sensitivity. Measurement of sIgE is no more reliable than skin prick tests and is more expensive, but may be preferred for uncooperative patients, those with widespread skin disease, or if the history suggests a risk of anaphylaxis. The presence of a positive skin test or positive sIgE, however, does not mean that the allergen is causing symptoms – the relevance of allergen exposure and its relation to symptoms must be confirmed by the patient’s history.

Imaging

Imaging studies are not routinely used in the diagnosis of asthma, but may be useful to investigate the possibility of comorbid conditions or alternative diagnoses in adults with difficult-to-treat asthma. Imaging may also be used to identify congenital abnormalities in infants with asthma-like symptoms, and alternative diagnoses in children with difficult-to-treat asthma. High-resolution computed tomography (CT) of the lungs can identify conditions such as bronchiectasis, emphysema, lung nodules, airway wall thickening and lung distension, and may assess airway distensibility. The presence of radiographically detected emphysema is considered when differentiating asthma from COPD (Box 7-4, p.137), but there is no accepted threshold, and these conditions can coexist. Moreover, air trapping (which may be present in asthma, and is also a feature of ageing) can be difficult to distinguish from emphysema. Chest imaging is not currently recommended to predict treatment outcomes or lung function decline, or to assess treatment response.

CT of the sinuses can identify changes suggestive of chronic rhinosinusitis with or without nasal polyps (p.120), which in patients with severe asthma may help with choice of biologic therapy (see Box 8-4, p.144).

Exhaled nitric oxide

The fractional concentration of exhaled nitric oxide (FeNO) is modestly associated with levels of sputum and blood eosinophils, but this association is lost in obesity. FeNO has not been established as useful for ruling in or ruling out a diagnosis of asthma (see Definition of asthma, p.23) because, while FeNO is higher in asthma that is characterized by Type 2 airway inflammation with elevated interleukin (IL)-4 and IL-13, it is also elevated in non-asthma conditions (e.g., eosinophilic bronchitis, atopy, allergic rhinitis, eczema), and it is not elevated in some asthma phenotypes (e.g., neutrophilic asthma, asthma with obesity). FeNO is also lower in smokers and during bronchoconstriction and the early phases of allergic response; it may be increased or decreased during viral respiratory infections. For information on the role of FeNO in asthma treatment, see Section 4 (p.72).
CONFIRMING THE DIAGNOSIS OF ASTHMA IN PATIENTS ALREADY TAKING ICS-CONTAINING TREATMENT

If the basis of a patient’s diagnosis of asthma has not previously been documented, confirmation with objective testing should be sought. In primary care, the presence of asthma cannot be confirmed in many patients (25–35%) who have previously received this diagnosis.29,42-55

The process for confirming the diagnosis in patients already on ICS-containing treatment depends on the patient’s symptoms and lung function (Box 1-4, p.30). In some patients, this may include a trial of either a lower or a higher dose of ICS-containing treatment. If the diagnosis of asthma cannot be confirmed, refer the patient for expert investigation and diagnosis. For some patients, it may be necessary to step down the ICS-containing treatment to confirm the diagnosis of asthma. The process is described in Box 1-5 (p.32).

Box 1-5. How to step-down ICS-containing treatment to help confirm the diagnosis of asthma

1. **ASSESS**
 - Document the patient’s current status including asthma symptom control and risk factors (Box 2-2, p.37) and lung function. If the patient has risk factors for asthma exacerbations (Box 2-2B), step down treatment only with close supervision.
 - Choose a suitable time (e.g., no respiratory infection, not going away on vacation, not pregnant).
 - Provide a written asthma action plan (Box 9-2, p.162) so the patient/caregiver knows how to recognize and respond if symptoms worsen. Ensure they will have enough medication to be able to resume their previous dose if their asthma worsens after stepping down.

2. **ADJUST**
 - Show the patient/caregiver how to reduce their ICS dose by 25–50%, or stop other maintenance medication (e.g., LABA) if being used. See step-down options in Box 4-13, p.102. Schedule a review visit for 2–4 weeks.

3. **REVIEW RESPONSE**
 - Repeat assessment of asthma control and lung function tests in 2–4 weeks (Box 1-2, p.26).
 - If symptoms increase and variable expiratory airflow limitation is confirmed after stepping down treatment, the diagnosis of asthma is confirmed. The patient should be returned to their lowest previous effective treatment.
 - If, after stepping down to a low-dose ICS-containing treatment, symptoms do not worsen and there is still no evidence of variable expiratory airflow limitation to confirm the diagnosis of asthma, consider ceasing ICS-containing treatment and repeating asthma control assessment and lung function tests in 2–3 weeks, but follow the patient for at least 12 months.29

See list of abbreviations (p.11)

HOW TO MAKE THE DIAGNOSIS OF ASTHMA IN OTHER CONTEXTS

Patients presenting with persistent cough as the only respiratory symptom

Common causes of an isolated non-productive cough include cough-variant asthma, chronic upper airway cough syndrome (often called ‘postnasal drip’), cough induced by angiotensin-converting enzyme (ACE) inhibitors, gastroesophageal reflux, chronic sinusitis, post-infectious cough,56 inducible laryngeal obstruction,57,58 and eosinophilic bronchitis.

In cough variant asthma, a persistent cough is the only symptom, or, in cough predominant asthma, the most prominent symptom.22,23,59 The cough may be worse at night or with exercise, and in some patients it is productive. Spirometry is usually normal, and the only abnormality in lung function may be airway hyperresponsiveness on
bronchial provocation testing (Box 1-2, p.26). Some patients with cough variant asthma may later develop wheeze and significant bronchodilator responsiveness on spirometry. Most patients with cough variant asthma have sputum eosinophilia, and they may also have elevated FeNO. Cough-variant asthma must also be distinguished from eosinophilic bronchitis in which patients have cough and sputum eosinophilia but normal spirometry and normal airway responsiveness. Treatment of cough variant asthma follows usual recommendations for asthma.

Occupational asthma and work-exacerbated asthma

Asthma acquired in the workplace is frequently missed. Asthma may be induced or (more commonly) aggravated by exposure to allergens or other sensitizing agents at work, or sometimes from a single, massive exposure. Occupational rhinitis may precede asthma by up to a year and early diagnosis is essential, as persistent exposure is associated with worse outcomes.

An estimated 5–20% of new cases of adult-onset asthma can be attributed to occupational exposure. Adult-onset asthma requires a systematic inquiry about work history and exposures, including hobbies. Asking patients whether their symptoms improve when they are away from work (weekends or vacation) is an essential screening question. It is important to confirm the diagnosis of occupational asthma objectively as it may lead to the patient changing their occupation, which may have legal and socioeconomic implications. Specialist referral is usually necessary, and frequent PEF monitoring at and away from work is often used to help confirm the diagnosis. There is more information about occupational asthma in Section 6 (p.117) and in specific guidelines.

Athletes

The diagnosis of asthma in athletes should be confirmed by lung function tests, usually with bronchial provocation testing. Conditions that may either mimic or be associated with asthma, such as rhinitis, laryngeal disorders (e.g., inducible laryngeal obstruction), dysfunctional breathing, cardiac conditions and over-training, must be excluded.

Pregnant women

Pregnant women and women planning a pregnancy should be asked whether they have asthma so that appropriate advice about asthma management and medications can be given (p.126). If the clinical history is consistent with asthma, and other diagnoses appear unlikely (Box 1-3, p.27) but the diagnosis of asthma is not confirmed on initial bronchodilator responsiveness testing (Box 1-2, p.26), manage as asthma with ICS-containing treatment (p.126) and postpone other diagnostic investigations until after delivery. During pregnancy, bronchial provocation testing is contraindicated, and it is not advisable to step down ICS-containing treatment.

The elderly

Asthma is frequently undiagnosed in the elderly due to poor perception of airflow limitation; acceptance of dyspnea as being ‘normal’ in old age, lack of fitness, and reduced physical activity. The presence of multimorbidity also complicates the diagnosis. In a large population-based survey of asthma patients older than 65 years, factors associated with a history of asthma hospitalization included co-diagnosis of COPD, coronary artery disease, depression, diabetes mellitus, and difficulty accessing medications or clinical care because of cost. Symptoms of wheezing, breathlessness and cough that are worse on exercise or at night can also be caused by cardiovascular disease or left ventricular failure, which are common in this age group. A careful history and physical examination, combined with an electrocardiogram and chest X-ray, will assist in the diagnosis. Measurement of plasma brain natriuretic polypeptide and assessment of cardiac function with echocardiography may also be helpful. In older people with a history of smoking or biomass fuel exposure, COPD and overlapping asthma and COPD (asthma–COPD overlap) should be considered (Section 7, p.131).

Smokers and ex-smokers

Asthma and COPD may be difficult to distinguish in clinical practice, particularly in older patients and smokers and ex-smokers, and these conditions may overlap (asthma-COPD overlap). The Global Strategy for Diagnosis, Management and Prevention of COPD (GOLD) 2024 defines COPD on the basis of chronic respiratory symptoms, environmental exposures such as smoking or inhalation of toxic particles or gases, with confirmation by post-bronchodilator FEV/FVC <0.7. Clinically important bronchodilator responsiveness (>12% and >200 mL) is often found in COPD. Low diffusion capacity is more common in COPD than asthma. The history and pattern of symptoms and past records
can help to distinguish patients with COPD from those with long-standing asthma who have developed persistent airflow limitation. Uncertainty in the diagnosis should prompt early referral for specialized investigation and treatment recommendations, as patients with asthma-COPD overlap have worse outcomes than those with asthma or COPD alone (see Section 7, p.131).

Obese patients

While asthma is more common in obese than non-obese people, respiratory symptoms associated with obesity can mimic asthma. In obese patients with dyspnea on exertion, it is important to confirm the diagnosis of asthma with objective measurement of variable expiratory airflow limitation. One study found that non-obese patients were just as likely to be over-diagnosed with asthma as obese patients (around 30% in each group). Another study found both over- and under-diagnosis of asthma in obese patients.

Low- and middle-income countries

Diagnosis of asthma in low-resource settings, including low- and middle-income countries (LMICs), presents substantial challenges for clinical practice. Access to lung function testing, particularly spirometry, is often very limited. Even when available, lung function testing may be substantially underused (e.g., unaffordable for the patient or health system, or too time-consuming in a busy clinic. A single lung function test may not be sufficient to confirm the diagnosis of asthma or indicate an alternative cause, so more than one visit by the patient (with resulting costs of time and travel) may be needed. The differential diagnosis of asthma in these countries may often include other endemic respiratory diseases (e.g., tuberculosis, HIV/AIDS-associated lung diseases, and parasitic or fungal lung diseases).

As a result of these issues, clinicians often use a syndromic approach to diagnosis and initial management, based on history and clinical findings. Practical evidence-based resources have been developed and implemented in several countries. This approach reduces diagnostic precision but is based on the assumption (valid in most LMICs) that under-diagnosis and under-treatment of asthma is more likely than the overdiagnosis and overtreatment often seen in high income countries.

GINA does not recommend that diagnosis of asthma should be solely based on syndromic clinical patterns, and suggests lung function testing with a PEF meter if spirometry is not available. The World Health Organization (WHO) Package of essential noncommunicable (PEN) disease interventions for primary care lists the PEF meter as an essential tool in the management of chronic respiratory diseases.

When spirometry is not available, the presence of variable expiratory airflow limitation (including reversible obstruction) can be confirmed by PEF, as outlined in Box 1-2, p.26. For example, before starting long-term ICS-containing treatment, the following investigations can help to confirm the diagnosis of asthma (or prompt investigation for alternative diagnoses)

- ≥20% improvement in PEF 15 minutes after giving 2 puffs of albuterol
- Improvement in symptoms and PEF after a 4-week therapeutic trial with ICS-containing treatment

Either of these findings would increase the likelihood of a diagnosis of asthma versus other diagnoses.

A structured algorithmic approach to patients presenting with respiratory symptoms forms part of several strategies developed for improving respiratory disease management in LMICs. These strategies are of particular use in countries where, owing to the high prevalence of tuberculosis, large numbers of patients with respiratory symptoms present for assessment at tuberculosis clinics.

There is a pressing need for access to affordable diagnostic tools (peak flow meters and spirometry), and training in their use, to be substantially scaled up in LMICs.
2. Assessment of asthma in adults, adolescents and children 6–11 years

KEY POINTS

Asthma control

- The level of asthma control is the extent to which the features of asthma can be observed in the patient, or have been reduced or removed by treatment.
- Asthma control is assessed in two domains: symptom control and risk of adverse outcomes. Poor symptom control is burdensome to patients and increases the risk of exacerbations, but patients with good symptom control can still have severe exacerbations.

Asthma severity

- The current definition of asthma severity is based on retrospective assessment, after at least 2–3 months of asthma treatment, from the intensity of treatment required to control symptoms and exacerbations.
- This definition is clinically useful for severe asthma, as it identifies patients whose asthma is relatively refractory to high intensity treatment with high-dose inhaled corticosteroids (ICS) and a long-acting beta2 agonist (LABA) and who may benefit from additional treatment such as biologic therapy. It is important to distinguish between severe asthma and asthma that is uncontrolled due to modifiable factors such as incorrect inhaler technique and/or poor adherence.
- However, the retrospective definition of mild asthma as ‘easy to treat’ is less useful, as patients with few interval symptoms can have exacerbations triggered by external factors such as viral infections or allergen exposure, and the treatment that was historically regarded as the lowest intensity – short-acting beta2 agonist (SABA) alone – actually increases the risk of exacerbations.
- ‘Mild asthma’ is a retrospective label, so it cannot be used to decide which patients are suitable to receive Step 1 or Step 2 treatment.
- In clinical practice and in the general community, the term ‘mild asthma’ is often used to mean infrequent or mild symptoms, and it is often assumed that these patients are not at risk and do not need ICS-containing treatment.
- For these reasons, GINA suggests that the term ‘mild asthma’ should generally be avoided in clinical practice if possible or, if used, qualified with a reminder that patients with infrequent symptoms can still have severe or fatal exacerbations, and that this risk is substantially reduced with ICS-containing treatment.
- GINA is continuing to engage in stakeholder discussions about the definition of mild asthma, to obtain agreement about the implications for clinical practice and clinical research of the changes in knowledge about asthma pathophysiology and treatment since the current definition of asthma severity was published.

How to assess a patient’s asthma

- Assess symptom control from the frequency of daytime and night-time asthma symptoms, night waking and activity limitation and, for patients using SABA reliever, their frequency of SABA use. Other tools for assessing recent symptom control include Asthma Control Test (ACT) and Asthma Control Questionnaire (ACQ). There are no validated tools for assessing symptom control over a longer period.
- Also, separately, assess the patient’s risk factors for exacerbations, even if their symptom control is good. Risk factors for exacerbations that are independent of symptom control include not only a history of ≥1 exacerbation in the previous year, but also SABA-only treatment (without any ICS), over-use of SABA, socioeconomic problems, poor adherence, incorrect inhaler technique, low forced expiratory volume in 1 second (FEV1), exposures such as smoking, and blood eosinophilia. To date, there are no suitable composite tools for assessing exacerbation risk.
- Also assess risk factors for persistent airflow limitation and medication side-effects (including from oral corticosteroids), treatment issues such as inhaler technique and adherence, and comorbidities, and ask the
patient/caregiver about their asthma goals and treatment preferences.

- Once the diagnosis of asthma has been made, the main role of lung function testing is in the assessment of future risk. It should be recorded at diagnosis, 3–6 months after starting treatment, and periodically thereafter.
- Investigate for impaired perception of bronchoconstriction if there are few symptoms but low lung function, and investigate for alternative diagnoses if there are frequent symptoms despite good lung function.

OVERVIEW

The long-term goal of asthma treatment is to achieve the best possible long-term outcomes for the patient (see Box 3-2, p.50 for more details about goals of treatment). For every patient, assessment of asthma should include the assessment of asthma control (both symptom control and future risk of adverse outcomes), treatment issues (particularly inhaler technique and adherence), and any comorbidities that could contribute to symptom burden and poor quality of life (Box 2-1, p.36). Lung function, particularly FEV₁ as a percentage of predicted value, is an important part of the assessment of future risk.

The use of digital technology, telemedicine and telehealthcare in the monitoring of patients with asthma is rapidly increasing, particularly during the COVID-19 pandemic. However, the types of interactions are diverse, and high-quality studies are needed to evaluate their utility and effectiveness.

Box 2-1. Summary of assessment of asthma in adults, adolescents, and children 6–11 years

1. Assess asthma control = symptom control AND future risk of adverse outcomes
 - Assess symptom control over the last 4 weeks (Box 2-2A, p.37) or longer.
 - Identify any other risk factors for exacerbations, persistent airflow limitation or side-effects (Box 2-2B).
 - Measure lung function at diagnosis/start of treatment, 3–6 months after starting ICS-containing treatment, then periodically, e.g., at least once every 1–2 years, but more often in at-risk patients and those with severe asthma.

2. Assess treatment issues
 - Document the patient’s current treatment step (Box 4-6, p.77).
 - Watch inhaler technique (Box 5-2, p.110), assess adherence (Box 5-3, p.112) and side-effects.
 - Check that the patient has a written asthma action plan.
 - Ask about the patient’s attitudes and goals for their asthma and medications.

3. Assess multimorbidity
 - Rhinitis, rhinosinusitis, gastroesophageal reflux, obesity, obstructive sleep apnea, depression and anxiety can contribute to symptoms and poor quality of life, and sometimes to poor asthma control (see Section 6, p.117).

What is meant by ‘asthma control’?

The level of asthma control is the extent to which the manifestations of asthma can be observed in the patient, or have been reduced or removed by treatment. It is determined by the interaction between the patient’s genetic background, underlying disease processes, the treatment that they are taking, environment, and psychosocial factors.

Asthma control has two domains: symptom control and future risk of adverse outcomes (Box 2-2, p.37). Both should always be assessed. Lung function is an important part of the assessment of future risk; it should be measured at the start of treatment, after 3–6 months of treatment (to identify the patient’s personal best), and periodically thereafter for ongoing risk assessment.
Box 2-2. GINA assessment of asthma control at clinical visits in adults, adolescents and children 6–11 years

A. Recent asthma symptom control (but also ask the patient/caregiver about the whole period since last review#)

In the past 4 weeks, has the patient had:

- Daytime asthma symptoms more than twice/week? Yes☐ No☐
- Any night waking due to asthma? Yes☐ No☐
- SABA* reliever for symptoms more than twice/week? Yes☐ No☐
- Any activity limitation due to asthma? Yes☐ No☐

<table>
<thead>
<tr>
<th>Well controlled</th>
<th>Partly controlled</th>
<th>Uncontrolled</th>
</tr>
</thead>
<tbody>
<tr>
<td>None of these</td>
<td>1–2 of these</td>
<td>3–4 of these</td>
</tr>
</tbody>
</table>

B. Risk factors for poor asthma outcomes

Assess risk factors at diagnosis and periodically, particularly for patients experiencing exacerbations.

Measure FEV₁ at start of treatment, after 3–6 months of ICS-containing treatment to record the patient’s personal best lung function, then periodically for ongoing risk assessment.

a. Risk factors for exacerbations

Uncontrolled asthma symptoms: Having uncontrolled symptoms is an important risk factor for exacerbations.85

Factors that increase the risk of exacerbations even if the patient has few asthma symptoms†

- **SABA over-use**: High SABA use (≥3 x 200-dose canisters/year associated with increased risk of exacerbations, increased mortality particularly if ≥1 canister per month) Reference [86-89]

- **Inadequate ICS**: not prescribed ICS, poor adherence,90 or incorrect inhaler technique91

- **Other medical conditions**: Obesity,92,93 chronic rhinosinusitis,93 GERD,93 confirmed food allergy,94 pregnancy95

- **Exposures**: Smoking,88 e-cigarettes,97 allergen exposure if sensitized,96 air pollution99-102

- **Psychosocial**: Major psychological or socioeconomic problems103,104

- **Lung function**: Low FEV₁ (especially <60% predicted),96,106 high bronchodilator responsiveness93,106,107

- **Type 2 inflammatory markers**: Higher blood eosinophils,93,108,109 high FeNO (adults with allergic asthma on ICS)110

- **Exacerbation history**: Ever intubated or in intensive care unit for asthma;111 ≥1 severe exacerbation in last year112,113

b. Risk factors for developing persistent airflow limitation

- **History**: Preterm birth, low birth weight and greater infant weight gain,114 chronic mucus hypersecretion115,116

- **Medications**: Lack of ICS treatment in patient with history of severe exacerbation117

- **Exposures**: Tobacco smoke,115 noxious chemicals; occupational or domestic exposures62

- **Investigation findings**: Low initial FEV₁,116 sputum or blood eosinophilia116

c. Risk factors for medication side-effects

- **Systemic**: Frequent OCS, long-term, high-dose and/or potent ICS, P450 inhibitors118

- **Local**: High-dose or potent ICS,118,119 poor inhaler technique120

See list of abbreviations (p.11).*Based on SABA (as-needed ICS-formoterol reliever not included); excludes reliever taken before exercise (see Assessing asthma symptom control, p.38).

#In addition to assessing recent asthma symptom control, also ask the patient about symptom control over the whole period since their last clinical review. There are no validated tools for assessing long-term symptom control, i.e., over periods longer than 4 weeks.

†‘Independent’ risk factors are those that are significant after adjustment for the level of symptom control. Cytochrome P450 inhibitors such as ritonavir, ketoconazole, itraconazole may increase systemic exposure to some types of ICS and some LABAs; see drug interaction websites and p.122 for details. For children 6–11 years, also refer to Box 2-3, p.40. See Box 3-5, p.55 for specific risk reduction strategies.
How to describe a patient’s asthma control

Asthma control should be described in terms of both symptom control and future risk domains. For example:

Ms X has good asthma symptom control, but she is at increased risk of future exacerbations because she has had a severe exacerbation within the last year. Mr Y has poor asthma symptom control. He also has several additional risk factors for future exacerbations including low lung function, current smoking, and poor medication adherence.

What does the term ‘asthma control’ mean to patients?

Many studies describe discordance between the patient’s and health provider’s assessment of the patient’s level of asthma control. This does not necessarily mean that patients ‘over-estimate’ their level of control or ‘under-estimate’ its severity, but that patients understand and use the word ‘control’ differently from health professionals, e.g., based on how quickly their symptoms resolve when they take reliever medication. If the term ‘asthma control’ is used with patients, the meaning should always be explained.

ASSESSING ASTHMA SYMPTOM CONTROL

Asthma symptoms such as wheeze, chest tightness, shortness of breath and cough typically vary in frequency and intensity, and contribute to the burden of asthma for the patient. Poor symptom control is also strongly associated with an increased risk of asthma exacerbations.

Asthma symptom control should be assessed at every opportunity, including during routine prescribing or dispensing. Directed questioning is important, as the frequency or severity of symptoms that patients regard as unacceptable or bothersome may vary from current recommendations about the goals of asthma treatment, and may differ from patient to patient. For example, despite having low lung function, a person with a sedentary lifestyle may not experience bothersome symptoms and so may appear to have good symptom control.

To assess recent symptom control (Box 2-2A, p.37) ask about the following in the past four weeks: frequency of asthma symptoms (days per week), any night waking due to asthma or limitation of activity and, for patients using a SABA reliever, frequency of its use for relief of symptoms. In general, do not include reliever taken before exercise, because some people take this routinely without knowing whether they need it.

Frequency of reliever use

Historically, frequency of SABA reliever use (<2 or ≥2 days/week) has been included in the composite assessment of symptom control. This distinction was arbitrary, based on the assumption that if SABA was used on >2 days in a week, the patient needed to start maintenance ICS-containing therapy or increase the dose. In addition, higher average use of SABA over a year is associated with a higher risk of severe exacerbations, and in the shorter term, increasing use of as-needed SABA is associated with an increased likelihood of a severe exacerbation in subsequent days or weeks.

However, for patients prescribed an anti-inflammatory reliever (AIR) such as as-needed low-dose ICS-formoterol (GINA Track 1, Box 4-6, p.77), use of this reliever more than 2 days/week is already providing additional ICS therapy, so further dose escalation may not be needed. In addition, increasing use of as-needed ICS-formoterol is associated with a significantly lower risk of severe exacerbation in subsequent days or weeks compared with if the reliever is SABA, or compared with if the patient is using SABA alone.

For these reasons, while the assessment of symptom control in Box 2-2A (p.37) includes a criterion for SABA reliever use on ≤2 versus >2 days/week, it does not include a similar criterion for an anti-inflammatory reliever such as as-needed ICS-formoterol. However, the patient’s average frequency of as-needed ICS-formoterol use over the past 4 weeks should be assessed, and considered when the patient’s maintenance ICS dose (or need for maintenance ICS-formoterol) is reviewed. This issue will be reviewed again when more data become available.

Tools for assessing recent asthma symptom control in adults and adolescents

Simple screening tools: these can be used in primary care to quickly identify patients who need more detailed assessment. Examples include the consensus-based GINA symptom control tool (Part A, Box 2-2A, p.37). This classification correlates with assessments made using numerical asthma control scores. It can be used, together with a risk assessment (Box 2-2B), to guide treatment decisions (Box 4-6, p.77). Other examples are the Primary Care
Asthma Control Screening Tool (PACS), and the 30-second Asthma Test, which also includes time off work/school.

Categorical symptom control tools: e.g., the consensus-based ‘Royal College of Physicians (RCP) Three Questions’ tool, which asks about difficulty sleeping, daytime symptoms and activity limitation due to asthma in the previous month. The Asthma APGAR tool includes a patient-completed asthma control assessment covering 5 domains: activity limitations, daytime and nighttime symptom frequency (based on US criteria for frequency of night waking), triggers, adherence, and patient-perceived response to treatment. This assessment is linked to a care algorithm for identifying problems and adjusting treatment up or down. A study in the US showed that introduction of the Asthma APGAR tools for patients aged 5–45 years in primary care was associated with improved rates of asthma control; reduced asthma-related urgent care, and hospital visits; and increased practices’ adherence to asthma management guidelines.

Numerical ‘asthma control’ tools: these tools provide scores and cut points to distinguish different levels of symptom control, validated against healthcare provider assessment. Many translations are available. These scores may be useful for assessing patient progress; they are commonly used in clinical research, but may be subject to copyright restrictions. Numerical asthma control tools are more sensitive to change in symptom control than categorical tools.

Examples of numerical asthma control tools for assessing recent symptom control are:

- **Asthma Control Questionnaire (ACQ):** Scores range from 0–6 (higher is worse), with scores calculated as the average from all questions. The authors stated that ACQ ≤0.75 indicated a high probability that asthma was well controlled; 0.75–1.5 as a ‘grey zone’; and ≥1.5 a high probability that asthma was poorly controlled, based on concepts of asthma control at the time; they later added that the crossover point between ‘well-controlled’ and ‘not well-controlled’ asthma was close to 1.00. The 5-item ACQ (ACQ-5), comprises five symptom questions. Two additional versions were published: ACQ-6 includes SABA frequency, and ACQ-7 also includes pre-bronchodilator FEV1 % predicted. The minimum clinically important difference for all three versions of ACQ is 0.5. GINA prefers ACQ 5 over ACQ-6 or 7 because the reliever question assumes regular rather than as-needed use of SABA, there is no option between zero SABA use in a week and SABA use every day, and ACQ has not been validated with ICS-formoterol or ICS-SABA as the reliever. In addition, if ACQ-7 were to be used in adjustment of treatment, the inclusion of FEV1 in the composite score could lead to repeated step-up in ICS dose for patients with persistent airflow limitation. For these reasons, data for ACQ-5, ACQ-6 and ACQ-7 cannot be combined for meta-analysis.

- **Asthma Control Test (ACT):** Scores range from 5–25 (higher is better). Scores of 20–25 are classified as ‘well-controlled’; 16–19 as ‘not well-controlled’; and 5–15 as very poorly controlled asthma. The ACT has four symptom/reliever questions plus patient self-assessed control. The minimum clinically important difference is 3 points. It has not been validated with ICS-formoterol or ICS-SABA reliever.

Patients with good symptom control can still be at risk of future severe exacerbations or asthma-related death, and there are many modifiable risk factors for exacerbations that are independent of symptom control (Box 2-2B, p.37), so GINA does not recommend assessment tools that combine symptom control with exacerbation history.

When different tools are used for assessing asthma symptom control, the results correlate broadly with each other, but are not identical. Respiratory symptoms may be non-specific so, when assessing changes in symptom control, it is important to clarify that symptoms are due to asthma.

Recent symptom control can be assessed over the previous 1–4 weeks using tools such as in GINA Box 2-2A, or ACQ-5 or ACT. There are no validated tools for assessing asthma symptom control over a longer period (e.g., 12 months); in clinical practice, the patient can be asked about previous months with a simple question, but there is likely to be substantial recall error, particularly for mild symptoms.
Box 2-3. Specific questions for assessment of asthma in children 6–11 years

Asthma symptom control

<table>
<thead>
<tr>
<th>Symptom Type</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day symptoms</td>
<td>Ask: How often does the child have cough, wheeze, dyspnea or heavy breathing (number of times per week or day)? What triggers the symptoms? How are symptoms managed?</td>
</tr>
<tr>
<td>Night symptoms</td>
<td>Cough, awakenings, tiredness during the day? (If the only symptom is nocturnal cough, consider other diagnoses such as rhinitis or gastroesophageal reflux disease).</td>
</tr>
<tr>
<td>Reliever use</td>
<td>How often is reliever medication used? (check date on inhaler or last prescription) Distinguish between pre-exercise use (sports) and use for relief of symptoms.</td>
</tr>
<tr>
<td>Level of activity</td>
<td>What sports/hobbies/interests does the child have, at school and in their spare time? How does the child’s level of activity compare with their peers or siblings? How many days is the child absent from school? Try to get an accurate picture of the child’s day from the child without interruption from the parent/caregiver.</td>
</tr>
</tbody>
</table>

Risk factors for adverse outcomes

<table>
<thead>
<tr>
<th>Factor Type</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exacerbations</td>
<td>Ask: How do viral infections affect the child’s asthma? Do symptoms interfere with school or sports? How long do the symptoms last? How many episodes have occurred since their last medical review? Any urgent doctor/emergency department visits? Is there a written action plan? Risk factors for exacerbations include a history of exacerbations, poor symptom control, poor adherence and poverty, and persistent bronchodilator reversibility even if the child has few symptoms.</td>
</tr>
<tr>
<td>Lung function</td>
<td>Check spirogram curves and technique. Main focus is on FEV1 and FEV1/FVC ratio. Plot these values as percent predicted to see trends over time.</td>
</tr>
<tr>
<td>Side-effects</td>
<td>Check the child’s height at least yearly, as poorly controlled asthma can affect growth, and growth velocity may be lower in the first 1–2 years of ICS treatment. Ask about frequency and dose of ICS and OCS.</td>
</tr>
</tbody>
</table>

Treatment factors

<table>
<thead>
<tr>
<th>Factor Type</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaler technique</td>
<td>Ask the child to show how they use their inhaler. Compare with a device-specific checklist.</td>
</tr>
<tr>
<td>Adherence</td>
<td>Is there any of the child’s prescribed maintenance medication (inhalers and/or tablets) in the home at present? On how many days in a week does the child use it (e.g., 0, 2, 4, 7 days)? Is it easier to remember to use it in the morning or evening? Where is the medication kept – is it in plain view to reduce forgetting? Check date on inhaler.</td>
</tr>
<tr>
<td>Goals/concerns</td>
<td>Does the child or their parent or caregiver have any concerns about their asthma (e.g., fear of medication, side-effects, interference with activity)? What are their goals for treatment?</td>
</tr>
</tbody>
</table>

Comorbidities

<table>
<thead>
<tr>
<th>Condition</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic rhinitis</td>
<td>Itching, sneezing, nasal obstruction? Can the child breathe through their nose? What medications are being taken for nasal symptoms?</td>
</tr>
<tr>
<td>Eczema</td>
<td>Sleep disturbance, topical corticosteroids?</td>
</tr>
<tr>
<td>Food allergy</td>
<td>Is the child allergic to any foods? (Confirmed food allergy is a risk factor for asthma-related death.)</td>
</tr>
<tr>
<td>Obesity</td>
<td>Check age-adjusted BMI. Ask about diet and physical activity.</td>
</tr>
</tbody>
</table>

Other investigations (if needed)

<table>
<thead>
<tr>
<th>Investigate Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-week diary</td>
<td>If no clear assessment can be made based on the above questions, ask the child or parent/caregiver to keep a daily diary of asthma symptoms, reliever use and peak expiratory flow (best of three) for 2 weeks.</td>
</tr>
<tr>
<td>Formal exercise challenge</td>
<td>Provides information about airway hyperresponsiveness and fitness (Box 1-2, p.26). Only perform challenge testing if it is otherwise difficult to assess asthma control.</td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11).
Tools for assessing recent asthma symptom control for children aged 6–11 years

In children, as in adults, assessment of asthma symptom control is based on symptoms, limitation of activities and use of rescue medication. Careful review of the impact of asthma on a child’s daily activities, including sports, play and social life, and on school absenteeism, is important. Many children with poorly controlled asthma avoid strenuous exercise so their asthma may appear to be well controlled. This may lead to poor fitness and a higher risk of obesity.

Children vary considerably in the degree of airflow limitation observed before they complain of dyspnea or use their reliever therapy, and marked reduction in lung function is often seen before it is recognized by the parent or caregiver. They may report irritability, tiredness, and changes in mood in their child as the main problems when the child’s asthma is not controlled. Parents/caregivers have a longer recall period than children, who may recall only the last few days; therefore, it is important to include information from both the parent/caregiver and the child when the level of symptom control is being assessed.

Several numeric tools have been developed for assessing recent asthma symptom control for children. These include:

- **Childhood Asthma Control Test (c-ACT)** with separate sections for parent/caregiver and child to complete
- **Asthma Control Questionnaire (ACQ)**

Some asthma control scores for children include history of exacerbations with symptoms, but these may have the same limitations as described above for adults. They include the Test for Respiratory and Asthma Control in Kids (TRACK) and the Composite Asthma Severity Index (CASI).

The results of these various tests correlate, to some extent, with each other and with the GINA classification of symptom control. Box 2-3 (p.40) provides more details about assessing asthma control in children.

ASSESSING FUTURE RISK OF EXACERBATIONS, LUNG FUNCTION DECLINE AND ADVERSE EFFECTS

The second component of assessing asthma control (Box 2-2B, p.37) is to identify whether the patient is at risk of adverse asthma outcomes, particularly exacerbations, persistent airflow limitation, and side-effects of medications (Box 2-2B). Asthma symptoms, although an important outcome for patients, and themselves a strong predictor of future risk of exacerbations, are not sufficient on their own for assessing asthma for several reasons:

- Asthma symptoms can be controlled by placebo or sham treatments or by inappropriate use of short-acting SABA or long-acting beta2 agonist (LABA) alone, all of which leave airway inflammation untreated.
- Respiratory symptoms may be due to other conditions such as lack of fitness, or comorbidities such as inducible laryngeal obstruction.
- Anxiety or depression may contribute to higher symptom reporting.
- Some patients have impaired perception of bronchoconstriction, with few symptoms despite low lung function.
- In patients with good symptom control, exacerbations can be triggered by environmental exposures such as viral infections, allergen exposure and poor air quality.

Asthma symptom control and exacerbation risk should not be simply combined numerically, as poor control of symptoms and of exacerbations may have different causes and may need different treatment approaches.

Risk factors for exacerbations

Poor asthma symptom control itself substantially increases the risk of exacerbations. However, several additional independent risk factors have been identified, i.e., factors that, when present, increase the patient’s risk of exacerbations even if symptoms are few. These risk factors (Box 2-2B, p.37) include a history of ≥1 exacerbation in the previous year, poor adherence, incorrect inhaler technique, chronic sinusitis and smoking, all of which can be assessed in primary care. The risk of severe exacerbations and mortality increases incrementally with higher SABA use, independent of treatment step. Prescribing of three or more 200-dose SABA inhalers in a year, corresponding to more than daily use, is associated with an increased risk of severe exacerbations and, in one study, increased mortality. Risk factors and comorbidities that are modifiable (or potentially modifiable) are sometimes called ‘treatable traits’. 154
In children, the risk of exacerbations is greatly increased if there is a history of previous exacerbations; it is also increased with poor symptom control, suboptimal drug regimen, comorbid allergic disease and poverty.113

Risk factors for development of persistent airflow limitation

The average rate of decline in FEV1 in non-smoking healthy adults is 15–20 mL/year.155 People with asthma may have an accelerated decline in lung function and develop airflow limitation that is not fully reversible. This is often associated with more persistent dyspnea. Independent risk factors that have been identified for persistent airflow limitation include exposure to cigarette smoke or noxious agents, chronic mucus hypersecretion, and asthma exacerbations in patients not taking ICS117 (see Box 2-2B, p.37). Children with persistent asthma may have reduced growth in lung function, and some are at risk of accelerated decline in lung function in early adult life.156 There is no clear evidence that treatment with ICS prevents accelerated decline in post-bronchodilator lung function, i.e., that it prevents development of persistent airflow limitation.

Risk factors for medication side-effects

Choices with any medication are based on the balance of benefit and risk. Most people using asthma medications do not experience any side-effects. The risk of side-effects increases with higher doses of medications, but these are needed in few patients. Systemic side-effects that may be seen with long-term, high-dose ICS include easy bruising, an increase beyond the usual age-related risk of osteoporosis and fragility fractures, cataracts, glaucoma, and adrenal suppression. Local side-effects of ICS include oral candidiasis (thrush) and dysphonia. Patients are at greater risk of ICS side-effects with higher doses or more potent formulations118,119 and, for local side-effects, with incorrect inhaler technique.120 A glossary of asthma medications has been added as an appendix at the end of this report (p.212).

Drug interactions with asthma medications: concomitant treatment with cytochrome P450 inhibitors such as ketoconazole, ritonavir, itraconazole, erythromycin and clarithromycin may increase the risk of ICS adverse effects such as adrenal suppression, and with short-term use, may increase the risk of cardiovascular adverse effects of the LABAs salmeterol and vilanterol (alone or in combination with ICS). Concomitant use of these medications is not recommended (see also p.122).157

ROLE OF LUNG FUNCTION IN ASSESSING ASTHMA CONTROL

Does lung function relate to other asthma control measures?

Lung function does not correlate strongly with asthma symptoms in adults158 or children.159 In some asthma control tools, lung function is numerically averaged or added with symptoms,135,160 but this is not recommended because if the tool includes several symptom items, these can outweigh clinically important differences in lung function.161 In addition, low FEV1 is a strong independent predictor of risk of exacerbations, even after adjustment for symptom frequency.

Lung function should be assessed at diagnosis or start of treatment, after 3–6 months of ICS-containing treatment to assess the patient’s personal best FEV1, and periodically thereafter. For example, in most adult patients, lung function should be recorded at least every 1–2 years, but more frequently in higher risk patients including those with exacerbations and those at risk of decline in lung function (see Box 2-2B, p.37). Lung function should also be recorded more frequently in children based on asthma severity and clinical course (Evidence D).

Once the diagnosis of asthma has been confirmed, it is not generally necessary to ask patients to withhold their regular or as-needed medications before visits,38 but preferably the same conditions should apply at each visit.

How to interpret lung function test results in asthma

A low FEV1 percent predicted:

- Identifies patients at risk of asthma exacerbations, independent of symptom levels, especially if FEV1 is <60% predicted.96,105,162,163
- Is a risk factor for lung function decline, independent of symptom levels.116
- If symptoms are few, suggests limitation of lifestyle, or poor perception of airflow limitation,164 which may be due to untreated airway inflammation.158
Normal FEV₁: A ‘normal’ or near-normal FEV₁ in a patient with frequent respiratory symptoms (especially when symptomatic) prompts consideration of alternative causes for the symptoms (e.g., cardiac disease, or cough due to post-nasal drip or gastroesophageal reflux disease; Box 1-3, p.27).

Persistent bronchodilator responsiveness: Finding significant bronchodilator responsiveness (increase in FEV₁ >12% and >200 mL from baseline) in a patient taking ICS-containing treatment, or who has taken a SABA within 4 hours, or a LABA within 12 hours (or 24 hours for a once-daily LABA), suggests uncontrolled asthma, particularly poor adherence and/or incorrect technique.

In children, spirometry cannot be reliably obtained until age 5 years or more, and it is less useful than in adults. Many children with uncontrolled asthma have normal lung function between flare-ups (exacerbations).

How to interpret changes in lung function in clinical practice

With regular ICS treatment, FEV₁ starts to improve within days, and reaches a plateau after around 2 months. The patient’s highest FEV₁ reading (personal best) should be documented, as this provides a more useful comparison for clinical practice than FEV₁ percent predicted. If predicted values are used in children, measure their height at each visit.

Some patients may have a faster than average decrease in lung function, and develop persistent (incompletely reversible) airflow limitation. While a short-term (e.g., 3 months) trial of higher dose ICS or ICS-LABA may be appropriate to see if FEV₁ can be improved, high doses should not be continued longer than this if there is no response.

The between-visit variability of FEV₁ (up to 12% week-to-week or 15% year-to-year in healthy individuals) limits its use in adjusting asthma treatment or identifying accelerated decline in clinical practice. The minimal important difference for improvement and worsening in FEV₁ based on patient perception of change has been reported to be about 10%.

The role of short-term and long-term lung function monitoring

Once the diagnosis of asthma is made, short-term peak expiratory flow (PEF) monitoring may be used to assess response to treatment, to evaluate triggers (including at work) for worsening symptoms, or to establish a baseline for action plans. After starting ICS, personal best PEF (from twice daily readings) is reached on average within 2 weeks. Average PEF continues to increase, and diurnal PEF variability to decrease, for about 3 months. Excessive variation in PEF suggests suboptimal asthma control, and increases the risk of exacerbations.

Long-term PEF monitoring is now generally only recommended for patients with severe asthma, or those with impaired perception of airflow limitation (e.g. few symptoms despite low initial lung function). For clinical practice, displaying PEF results on a standardized chart may improve accuracy of interpretation. Home spirometric monitoring has been used in some clinical trials; careful training of patients in spirometric technique is essential. Results from clinic-based and home-recorded spirometry are not interchangeable.

ASSESSING ASTHMA SEVERITY

The current concept of asthma severity is based on ‘difficulty to treat’

The current concept of asthma severity, recommended by an ATS/ERS Task Force and included in most asthma guidelines, is that asthma severity should be assessed retrospectively from how difficult the patient’s asthma is to treat. This is reflected by the level of treatment required to control the patient’s symptoms and exacerbations, i.e., after at least several months of treatment. This definition is mainly relevant to, and useful for, severe asthma.

By this definition:

• severe asthma is defined as asthma that remains uncontrolled despite optimized treatment with high-dose ICS-LABA, or that requires high-dose ICS-LABA to prevent it from becoming uncontrolled. Severe asthma must be distinguished from asthma that is difficult to treat due to inadequate or inappropriate treatment, or persistent problems with adherence or comorbidities such as chronic rhinosinusitis or obesity, as they need very different treatment compared with if asthma is relatively refractory to high-dose ICS-LABA or even oral corticosteroids.
See Box 2-4 (p.47) for how to distinguish difficult-to-treat asthma from severe asthma, and Section 8 (p.139) for more detail about assessment, referral and treatment in this population.

- moderate asthma is asthma that is well controlled with Step 3 or Step 4 treatment e.g., with low- or medium-dose ICS LABA in either treatment track
- mild asthma is asthma that is well controlled with low-intensity treatment, i.e., as needed low-dose ICS-formoterol, or low-dose ICS plus as-needed SABA.

The utility of this retrospective definition of asthma severity is limited by the fact that it cannot be assessed unless good asthma control has been achieved and treatment stepped down to find the patient’s minimum effective dose at which their asthma remains well controlled (Box 4-13, p.102), or unless asthma remains uncontrolled despite at least several months of optimized maximal therapy.

The terms ‘severe asthma’ and ‘mild asthma’ are often used with different meanings than this

In the community and in primary care, the terms ‘severe’ or ‘mild’ asthma are more commonly based on the frequency or severity of symptoms or exacerbations, irrespective of treatment. For example, asthma is commonly called ‘severe’ if patients have frequent or troublesome asthma symptoms, regardless of their treatment, and ‘mild asthma’ is commonly used if patients do not have daily symptoms or if symptoms are quickly relieved.

In epidemiological studies and clinical trials, asthma is often classified as ‘mild’, ‘moderate’ or ‘severe’ based only on the prescribed treatment by GINA or BTS Step, regardless of patients’ level of asthma control. This assumes that the prescribed treatment was appropriate for the patient’s needs, but asthma is often under-treated or over-treated.

Most clinical trials of biologic therapy enroll patients with asthma that is uncontrolled despite taking medium- or high-dose ICS-LABA, but contributory factors such as incorrect inhaler technique, poor adherence, or comorbidities are rarely assessed and treated before the patient’s eligibility for enrolment is considered. Some clinical trial participants may therefore have ‘difficult-to-treat’, rather than severe asthma.

Some guidelines also retain another, older, classification of asthma severity based on symptom and SABA frequency, night waking, lung function and exacerbations before ICS-containing treatment is started. This classification also distinguishes between ‘intermittent’ and ‘mild persistent’ asthma, but this historical distinction was arbitrary: it was not evidence-based, but was based on an untested assumption that patients with symptoms ≤2 days/week were not at risk and would not benefit from ICS, so should be treated with SABA alone. However, it is now known that patients with so-called ‘intermittent’ asthma can have severe or fatal exacerbations, and that their risk is substantially reduced by ICS-containing treatment compared with SABA alone. Although this symptom-based classification is stated to apply to patients not on ICS-containing treatment, it is often used for patients taking these medications. This can cause confusion, as a patient’s asthma may be classified differently, and they may be prescribed different treatment, depending on which definition the clinician or healthcare system uses.

For low-resource countries without access to effective medications such as ICS, the World Health Organization definition of severe asthma includes a category of ‘untreated severe asthma’. This category corresponds to uncontrolled asthma in patients not taking any ICS-containing treatment.

The patient’s view of asthma severity

Patients may perceive their asthma as severe if they have intense or frequent symptoms, but this does not necessarily indicate underlying severe disease, as symptoms and lung function can rapidly become well controlled with commencement of ICS-containing treatment, or improved inhaler technique or adherence. Likewise, patients often perceive their asthma as mild if they have symptoms that are easily relieved by SABA, or that are infrequent. Of concern, patients often interpret the term ‘mild asthma’ to mean that they are not at risk of severe exacerbations and do not need to take ICS-containing treatment. This is often described as patients ‘underestimating’ their asthma severity, but instead it reflects their different interpretation of the words ‘severity’ and ‘mild’ compared with the academic usage of these terms.

How useful is the current retrospective definition of asthma severity?

The retrospective definition of severe asthma based on ‘difficulty to treat’ has been widely accepted in guidelines and in specialist clinical practice. It has obvious clinical utility as it identifies patients who, because of their burden of disease and incomplete response to optimized conventional ICS-based treatment, may benefit from referral to a
respiratory physician (if available) for further investigation, phenotyping, and consideration of additional treatment such as biologic therapy (See Section 8, p.139). It is appropriate to classify asthma as ‘difficult-to-treat’ rather than severe if there are modifiable factors such as incorrect inhaler technique, poor adherence or untreated comorbidities, because asthma may become well controlled when such issues are addressed.38-82,173

By contrast, the clinical utility of the retrospective definition of mild asthma is much less clear. There is substantial variation in opinions about the specific criteria that should be used, for example whether FEV1 should be ≥80% predicted in order for asthma to be considered ‘mild’, and whether the occurrence of any exacerbation precludes a patient’s asthma being classified as ‘mild’ for the next 12 months.186 There are too few studies of the underlying pathology to discern whether isolated exacerbations necessarily imply greater inherent severity, especially given the contribution of external triggers such as viral infections or allergen exposure to sporadic exacerbations.

Further, by this definition, asthma can be classified as ‘mild’ only after several months of ICS-containing treatment, and only if asthma is well controlled on low-dose ICS or as-needed low-dose ICS-formoterol, so this definition clearly cannot be applied to patients with uncontrolled or partly controlled symptoms who are taking SABA.

Finally, retrospective classification of asthma as mild appears of little value in deciding on future treatment. In addition, in the studies of as-needed ICS-formoterol, baseline patient characteristics such as daily reliever use, lower lung function or history of exacerbations (or even baseline blood eosinophils or FeNO) did not identify patients who should instead be treated with daily ICS.187,188 Instead, decisions about ongoing treatment should be based upon the large evidence base about the efficacy and effectiveness of as-needed ICS-formoterol or daily ICS, together with an individualized assessment of the patient’s symptom control, exacerbation risk, predictors of response, and patient preferences (see Box 3-3, p.53).

However, the most urgent problem with the term ‘mild asthma’, regardless of how it is defined, is that it encourages complacency, since both patients and clinicians often interpret ‘mild asthma’ to mean that the patient is at low risk and does not need ICS-containing treatment. However, up to 30% of asthma exacerbations and deaths occur in people with infrequent symptoms, for example, less than weekly or only on strenuous exercise.180,181

Interim advice about asthma severity descriptors

For clinical practice

GINA continues to support the current definition of severe asthma as asthma that remains uncontrolled despite optimized treatment with high-dose ICS-LABA, or that requires high-dose ICS-LABA or biologic therapy to prevent it from becoming uncontrolled. GINA also maintains the clinically important distinction between difficult-to-treat and severe asthma. See Box 2-4 (p.47) and Section 8 (p.139) for more detail about assessment and management of difficult-to-treat and severe asthma. For patients who have had a good asthma response to biologic therapy, it may be helpful for administrative reasons to describe their asthma as, e.g., ‘severe eosinophilic asthma, well controlled on therapy’, to indicate that the biologic therapy is needed to maintain their improved status. For discussion about the related concept of asthma remission on treatment, see p.50.

We suggest that in clinical practice, the term ‘mild asthma’ should generally be avoided if possible, because of the common but mistaken assumption by patients and clinicians that it equates to low risk, and that ICS treatment is not needed. Instead, assess each patient’s symptom control and risk factors on their current treatment (Box 2-1, p.36), as well as multimorbidity and patient goals and preferences. Explain that patients with infrequent or mild asthma symptoms can still have severe or fatal exacerbations if treated with SABA alone,180,181 and that this risk is reduced by half to two-thirds with low-dose ICS or with as-needed low-dose ICS formoterol.185,186 Ensure that you prescribe ICS-containing therapy to reduce the patient’s risk of severe exacerbations (Box 4-3, p.74), and treat any modifiable risk factors or comorbidities using pharmacologic or non-pharmacologic strategies (see Box 3-5, p.55 and Box 3-6, p.57).

‘Mild asthma’ is a retrospective label, so it cannot be used to decide which treatment patients should receive. Advice has been provided in Section 4 about which patients are suitable for low intensity treatment (Step 1 and 2).

For health professional education

The term ‘apparently mild asthma’ may be useful to highlight the discordance between symptoms and risk, i.e., that patients with infrequent or mild symptoms, who might therefore appear to have mild asthma, can still have severe or fatal exacerbations. However, ‘apparently mild asthma’ in English can easily be mistranslated into some languages as
‘obviously mild asthma’, which is the opposite of the intended meaning. Alternative phrases include ‘asthma that seems to be mild’.

Regardless of the term used, explain that ‘asthma control’ tools such as ACQ and ACT assess only one domain of asthma control, and only over a short period of time (see Assessing asthma symptom control, p.38), and that patients with infrequent interval symptoms are over-represented in studies of severe, near-fatal and fatal asthma exacerbations. Always emphasize the need for and benefit from ICS-containing treatment in patients with asthma, regardless of their symptom frequency or severity, and even if they have no obvious additional risk factors.

For epidemiologic studies

If clinical details are not available, describe the prescribed (or dispensed) treatment, without imputing severity, e.g., ‘patients prescribed SABA with no ICS’ rather than ‘mild asthma’. Since treatment options change over time, and may differ between guidelines, state the actual treatment class, rather than a treatment Step (e.g., ‘low-dose maintenance-and-reliever therapy with ICS-formoterol’ rather than ‘Step 3 treatment’).

For clinical trials

Describe the patient population by their level of asthma control and treatment, e.g., ‘patients with uncontrolled asthma despite medium-dose ICS-LABA plus as-needed SABA’ rather than ‘moderate asthma’.

Further discussion is clearly needed

Given the importance of mild asthma and the discordance between its current academic definition and the various ways that the term is used in clinical practice, GINA is continuing to discuss these issues with a wide range of stakeholders. The aim is to obtain agreement among patients, health professionals, researchers, industry and regulators about the implications for clinical practice and clinical research of current knowledge about asthma pathophysiology and treatment, and whether/how the term ‘mild asthma’ should be used in the future. Pending the outcomes of this discussion, no change has been made to use of the term ‘mild asthma’ elsewhere in this GINA Strategy Report.

HOW TO DISTINGUISH BETWEEN UNCONTROLLED ASTHMA AND SEVERE ASTHMA

Although good symptom control and minimal exacerbations can usually be achieved with ICS-containing treatment, some patients will not achieve one or both of these goals even with a long period of high-dose therapy. In some patients this is due to truly refractory severe asthma, but in many others, it is due to incorrect inhaler technique, poor adherence, over-use of SABA, comorbidities, persistent environmental exposures, or psychosocial factors.

It is important to distinguish between severe asthma and uncontrolled asthma, because lack of asthma control is a much more common reason for persistent symptoms and exacerbations, and may be more easily improved. Box 2-4 (p.47) shows the initial steps that can be carried out in primary care to identify common causes of uncontrolled asthma. More details are given in Section 8 (p.139) about investigation and management of difficult-to-treat and severe asthma, including referral to a respiratory physician or severe asthma clinic where possible, and use of add-on treatment including biologic therapy.

The most common problems that need to be excluded before making a diagnosis of severe asthma are:

- Poor inhaler technique (up to 80% of community patients) (Box 5-2, p.110)
- Poor medication adherence (Box 5-3, p.112)
- Incorrect diagnosis of asthma, with symptoms due to alternative conditions such as inducible laryngeal obstruction, cardiac failure or lack of fitness (Box 1-3, p.27)
- Multimorbidity such as rhinosinusitis, GERD, obesity and obstructive sleep apnea (Section 6, p.117)
- Ongoing exposure to sensitizing or irritant agents in the home or work environment, including tobacco smoke.
Box 2-4. Investigating poor symptom control and/or exacerbations despite treatment

<table>
<thead>
<tr>
<th>Watch patient using their inhaler</th>
<th>Discuss adherence and barriers to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Watch patient use their inhaler(s), check against inhaler checklist. Show correct method, and recheck, up to 3 times. Re-check each visit.</td>
<td>• Have empathic discussion to identify poor adherence with maintenance treatment, e.g. “Many patients don’t use their inhaler as prescribed. In the last 4 weeks, how many days a week have you taken it?” (0 days, 1, 2, 3 etc) and/or: “Do you find it easier to remember your inhaler in the morning or the evening?” Ask about beliefs, cost of medications, and refill frequency.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confirm the diagnosis of asthma</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• If no evidence of variable airflow limitation on spirometry or other testing (Box 1-2), consider halving ICS dose and repeating lung function after 2–3 weeks (Boxes 1-4, 1-9), check patient has action plan. Consider referring for challenge test.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If possible, remove potential risk factors</th>
<th>Assess and manage comorbidities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• For adults/adolescents, switch to GINA Track 1, if available, to reduce exacerbations and simplify regimen (Boxes 4-3, 4-6)</td>
<td>• Check for risk factors or inducers such as smoking, beta-blockers or NSAIDs, or occupational or domestic allergen exposure (Box 2-2), and address as possible (Box 3-5)</td>
</tr>
<tr>
<td>• Check for and manage comorbidities (e.g. rhinitis, obesity, GERD, obstructive sleep apnea, depression/anxiety) that may be contributing to symptoms or exacerbations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consider treatment step-up</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Consider short-term (3–6 months) step-up to next treatment level or alternative option on present level (Boxes 4-6, 4-12).</td>
<td></td>
</tr>
<tr>
<td>• Use shared decision-making, and balance potential benefits and risks</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refer for expert advice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• If asthma still uncontrolled after 3–6 months on high dose ICS-LABA, or with ongoing risk factors, refer for expert advice</td>
<td>• Refer earlier than 6 months if asthma very severe or difficult to manage, or if doubts about diagnosis, or if occupational asthma is suspected.</td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11). See Section 8 (p.139) for more details about assessment and management of difficult-to-treat and severe asthma.
3. Principles of asthma management in adults, adolescents and children 6–11 years

KEY POINTS

The patient-health professional partnership

- Effective asthma management requires a partnership between the person with asthma (or the parent/caregiver) and their healthcare providers.
- Teaching communication skills to healthcare providers may lead to increased patient satisfaction, better health outcomes, and reduced use of healthcare resources.
- The patient's ability to obtain, process and understand basic health information to make appropriate health decisions ('health literacy') should be considered.

Goals of asthma management

The GINA goal of asthma management is to achieve the best possible long-term outcomes for the individual patient. This may include good long-term symptom control (few/no asthma symptoms, no sleep disturbance due to asthma, and unimpaired physical activity), and minimized long-term risk of asthma-related mortality, exacerbations, persistent airflow limitation and side-effects of treatment. The patient’s own goals should also be identified.

Remission of asthma

- Remission of asthma can be identified in children and in adults, either clinical remission or complete remission, and either off-treatment or on-treatment. Definitions and criteria vary.
- The concept of clinical remission on treatment is consistent with the long-term goal of asthma management promoted by GINA, to achieve the best possible long-term asthma outcomes for each patient.
- Research among patients who have (or have not) experienced clinical or complete remission of asthma, either off-treatment or on-treatment, provides important opportunities for understanding underlying mechanisms of asthma, to develop new approaches to asthma prevention and management. This will be facilitated by using standardized criteria and assessment tools.
- Take care if using the term ‘remission’ in conversations with patients or parents/caregivers, as they may assume it means a cure, or may associate it with cancer or leukemia. Explain what you mean, and that if asthma symptoms have gone quiet for a while, they may recur.

Making decisions about asthma treatment

- Asthma treatment is adjusted in a continual cycle of assessment, treatment, and review of the patient’s response in both symptom control and future risk (of exacerbations and side-effects), and of patient preferences.
- For population-level decisions about asthma medications, e.g., national guidelines, insurers, health maintenance organizations or national formularies, the ‘preferred’ regimens in Steps 1–4 represent the best treatments for most patients, based on evidence from randomized controlled trials, meta-analyses and observational studies about safety, efficacy and effectiveness, with a particular emphasis on symptom burden and exacerbation risk. For Steps 1–5, there are different preferred population-level recommendations for different age-groups (adults/adolescents, children 6–11 years, children 5 years and younger). In Step 5, there are also different preferred population-level recommendations depending on the inflammatory phenotype, Type 2 or non-Type 2.
- For individual patients, shared decision-making about treatment should also consider any patient characteristics or phenotype or environmental exposures that predict the patient’s risk of exacerbations or other adverse outcomes, or their likely response to treatment, together with the patient’s goals or concerns and practical issues (inhaler technique, adherence, medication access and cost to the patient).
- Optimize asthma management, including inhaled therapy and non-pharmacologic strategies, to reduce the need for oral corticosteroids (OCS) and their multiple associated adverse effects.
THE PATIENT–HEALTHCARE PROVIDER PARTNERSHIP

Effective asthma management requires the development of a partnership between the person with asthma (or the parent/caregiver) and healthcare providers.192 This should enable the person with asthma to gain the knowledge, confidence and skills to assume a major role in the management of their asthma. Self-management education reduces asthma morbidity in both adults193 (Evidence A) and children194 (Evidence A).

There is emerging evidence that shared decision-making is associated with improved outcomes.195 Patients and caregivers should be encouraged to participate in decisions about treatment, and given the opportunity to express their expectations and concerns. This partnership needs to be individualized for each patient. A person’s willingness and ability to engage in self-management may vary depending on factors such as ethnicity, literacy, understanding of health concepts (health literacy), numeracy, beliefs about asthma and medications, desire for autonomy, and the healthcare system.

Good communication

Good communication by healthcare providers is essential as the basis for good outcomes (Evidence B).196-198 Teaching healthcare providers to improve their communication skills (Box 3-1) can result in increased patient satisfaction, better health outcomes, and reduced use of healthcare resources196-198 without lengthening consultation times.199 It can also enhance patient adherence.199 Training patients to give information clearly, seek information, and check their understanding of information provided is also associated with improved adherence with treatment recommendations.199

Box 3-1. Communication strategies for healthcare providers

Key strategies to facilitate good communication

- A congenial demeanor (friendliness, humor and attentiveness)
- Allowing the patient to express their goals, beliefs and concerns
- Empathy, reassurance, and prompt handling of any concerns
- Giving encouragement and praise
- Giving appropriate (personalized) information
- Providing feedback and review

How to reduce the impact of low health literacy

- Order information from most to least important.
- Speak slowly and use simple words (avoid medical language, if possible).
- Simplify numeric concepts (e.g., use numbers instead of percentages).
- Frame instructions effectively (use illustrative anecdotes, drawings, pictures, table or graphs).
- Confirm understanding by using the ‘teach-back’ method (ask patients to repeat instructions).
- Ask a second person (e.g., nurse, family member) to repeat the main messages.
- Pay attention to non-verbal communication by the patient.
- Make patients feel comfortable about asking questions.

Health literacy and asthma

There is increasing recognition of the impact of low health literacy on health outcomes, including in asthma.200,201 Health literacy means much more than the ability to read: it is defined as “the degree to which individuals have the capacity to obtain, process and understand basic health information and services to make appropriate health decisions”.200 Low health literacy is associated with reduced knowledge and worse asthma control.202 In one study, low numeracy among parents of children with asthma was associated with higher risk of exacerbations.201 Interventions adapted for cultural and ethnicity perspectives have been associated with improved knowledge and significant improvements in inhaler technique.203 Suggested communication strategies for reducing the impact of low health literacy are shown in Box 3-1 (p.49).
LONG-TERM GOAL OF ASTHMA MANAGEMENT

The long-term goal of asthma management from a clinical perspective is to achieve the best possible outcomes for the patient, including long-term symptom control and long-term asthma risk minimization (Box 3-3, p.53). This includes preventing exacerbations, accelerated decline in lung function, and medication adverse effects. At a population level, the goals of asthma management also include minimizing asthma deaths, urgent health care utilization, and the socioeconomic impacts of uncontrolled asthma.

It is also important to elicit the patient's (or parent/caregiver’s) goals regarding their asthma, as these may differ from medical goals. Shared goals for asthma management can be achieved in various ways, with consideration of differing healthcare systems, medication availability, and cultural and personal preferences.

Box 3-2. Long-term goal of asthma management

The goal of asthma management is to achieve the best possible long-term asthma outcomes for the patient:

- Long-term asthma symptom control, which may include:
 - Few/no asthma symptoms
 - No sleep disturbance due to asthma
 - Unimpaired physical activity

- Long-term asthma risk minimization, which may include:
 - No exacerbations
 - Improved or stable personal best lung function
 - No requirement for maintenance systemic corticosteroids
 - No medication side-effects.

The patient’s goals for their asthma may be different from these medical goals; ask the patient what they want from their asthma treatment.

When discussing the best possible asthma outcomes with a patient, consider their goals, their asthma phenotype, clinical features, multimorbidity, risk factors (including severity of airflow limitation), practical issues including the availability and cost of medications, and the potential adverse effects of treatment (Box 3-4, p.54).

Assessing symptom control is NOT enough: the patient’s risk factors (Box 2-2B, p.37), including history of exacerbations, should always also be assessed.

Symptom control and risk may be discordant: patients with few or no symptoms can still have severe or fatal exacerbations, including from external triggers such as viral infections, allergen exposure (if sensitized) or pollution.

REMISSION OF ASTHMA

Remission of asthma has been investigated extensively in the past, most commonly remission of childhood asthma off treatment. Definitions and criteria vary, but they commonly refer to either clinical remission (e.g., no asthma symptoms or exacerbations for a specific period) or complete (or pathophysiological) remission (e.g., also including normal lung function, airway responsiveness and/or inflammatory markers). There has been interest in remission off treatment, and remission on treatment, for example with biologic therapy for severe asthma. The concept of clinical remission on treatment is consistent with the long-term goal of asthma management promoted by GINA, which is to achieve the best possible long-term asthma outcomes for the patient (see Box 3-2, p.50). When discussing the best possible outcomes with a patient, consider their own asthma goals, their asthma phenotype, clinical features, multimorbidity, risk factors (including severity of airflow limitation), practical issues including the availability and cost of medications, and the potential adverse effects of treatment (Box 3-4, p.54).

Research in patients who have (or have not) experienced clinical or complete remission of asthma, either off treatment or on treatment, provides important opportunities for understanding the heterogeneous and interconnected underlying mechanisms of asthma, and for developing new approaches to asthma prevention and management. This will be facilitated by using standardized criteria and tools.
Remission of childhood asthma

Reported rates of remission off treatment from studies in children with wheezing or asthma vary depending on the populations, definitions, and length of follow-up. For example, in one study, 59% of wheezing preschool children had no wheezing at 6 years, whereas in another study, only 15% of children with persistent wheezing at/after 9 years had no wheezing at 26 years. Clinical remission is more frequent than pathophysiological remission at all ages.

The most important predictors of asthma remission in school-aged children are fewer, milder or decreasing frequency of symptomatic episodes, good or improving lung function, and less airway hyperresponsiveness. Risk factors for persistence of childhood asthma include atopy, parental asthma/allergy, later onset of symptoms, wheezing without colds, and maternal smoking or tobacco smoke exposure.

Remission is not cure: after remission in childhood or adolescence, asthma often recurs later in life. Children whose asthma has remitted have an increased risk of accelerated lung decline in adulthood, independent from, but synergistic with, tobacco smoking; and they may develop persistent airflow limitation, although this is less likely than for those whose asthma has persisted. This suggests the importance of monitoring lung function in people with remission of asthma symptoms.

To date, there is no evidence that interventions in childhood increase the likelihood of remission of asthma or reduce the risk of recurrence. However, treatment of asthma in childhood with inhaled corticosteroid (ICS) substantially reduces the burden of asthma on the child and family, reduces absence from school and social events, reduces the risk of exacerbations and hospitalizations, and allows the child to participate in normal physical activity.

Parents/caregivers often ask if their child will grow out of their asthma, and will not need treatment in the future. Current consensus supports the following advice for discussions like these:

- If the child has no reported symptoms, check for evidence of ongoing disease activity (e.g., wheezing; child avoiding physical activity), and check lung function if testing is available.
- Use a description like ‘asthma has gone quiet for the present’ to help avoid misunderstandings. If you use the term ‘remission’ with parents/caregivers, explain the medical meaning, because it is often interpreted as meaning a permanent cure.
- Advise parents/caregivers that, even if the child’s symptoms resolve completely, their asthma may recur later.
- Emphasize the benefits of taking controller treatment for the child’s current health, their risk of asthma attacks, and their ability to participate in school and sporting activities, while avoiding claims about effect of therapy on future asthma outcomes.

Research needs: clinical questions about remission off treatment in children focus on the risk factors for asthma persistence and recurrence (including clinical, pathological, and genetic factors), the effect of risk reduction strategies on the likelihood of remission, whether monitoring after remission to allow early identification of asthma recurrence improves outcomes, and whether progression to persistent airflow limitation can be prevented. Clinical questions about remission on treatment (e.g., in children with severe asthma treated with biologic therapy) include investigating whether inhaled anti-inflammatory therapy can be down-titrated.

Remission of adult asthma

Clinical or complete remission off treatment has been observed in some adults, either spontaneously or after cessation of controller treatment. For example, 15.9% of patients with adult-onset asthma experienced clinical remission (no asthma symptoms and no asthma medications) within 5 years. Remission is sometimes seen in people with occupational asthma after cessation of exposure. Clinical remission of asthma in adult life is more common with childhood-onset asthma than adult-onset asthma. However, persistence of airway hyperresponsiveness and/or airway inflammation is found in most adults with clinical remission of asthma.

In recent years, there has been increasing interest in asthma remission on treatment, particularly with biologic therapy for severe asthma. Various definitions have been proposed. For clinical remission, these often include criteria such as no asthma symptoms, no exacerbations, no use of OCS, and stable or improving lung function, over a defined prolonged period. For complete remission, normalization of airway responsiveness and/or inflammatory markers has been proposed.
For patients with severe asthma treated with biological therapy and medium- or high-dose ICS in combination with a long-acting beta₂ agonist (LABA), remission rates will vary depending on the baseline characteristics of the populations studied and the criteria for and duration of, remission (including how ‘no symptoms’ is assessed). 204-206,217,218

Baseline predictors of remission on treatment with various biologic therapies for severe asthma include better short-term asthma symptom control scores (ACT or ACQ), better lung function, fewer comorbidities, earlier asthma onset, and no or lower maintenance OCS use at baseline. 206,218 In a study of clinical remission off treatment of adult-onset asthma, the only baseline predictors of clinical persistence were moderate-to-severe airway hyperresponsiveness and nasal polyps. 25

Although clinical asthma remission on treatment has been most extensively investigated in adults with severe asthma treated with biologics, the concept is relevant to patients with asthma of any severity and any treatment, including ICS-containing therapy, oral pharmacotherapies, allergen immunotherapy and non-pharmacological interventions (e.g., lifestyle interventions).

In the lay media, the word ‘remission’ is most often heard in association with cancer or leukemia, so if it is used in discussion with patients, the medical meaning for asthma should be explained. If the patient experiences clinical remission, explain that this does not mean permanent cure, and that they should not stop taking any of their asthma medications except on medical advice.

Research needs: for asthma remission on treatment in adults include the association between clinical criteria with biomarkers, imaging, or pathology samples (including for ‘omics’ analysis) that may reflect the underlying disease processes, and investigation of predictors of long-term remission or recurrence. The framework for validating proposed criteria for remission on treatment will depend on their intended purpose, for example as an assessment tool in clinical practice, for prognosis of continued long-term stability, or for identifying new targets for therapy. Clinical and qualitative research with a range of treatments is needed to know whether aiming for remission will improve long-term outcomes for patients with asthma.

PERSONALIZED CONTROL-BASED ASTHMA MANAGEMENT

Asthma control has two domains: symptom control and risk reduction (see Box 2-2, p.37). In control-based asthma management, pharmacological and non-pharmacological treatment is adjusted in a continual cycle that involves assessment of symptom control and risk factors, treatment and review by appropriately trained personnel (Box 3-3, p.53) to achieve the goals of asthma treatment (Section 3, p.48). Asthma outcomes have been shown to improve after the introduction of control-based guidelines 219,220 or practical tools for implementation of control-based management strategies. 195,221

The concept of control-based management is also supported by the design of most randomized controlled medication trials, in which patients are identified for a change in asthma treatment based on features of poor symptom control with or without other risk factors such as low lung function or a history of exacerbations. Since 2014, GINA asthma management has focused not only on asthma symptom control, but also on personalized management of the patient’s modifiable risk factors for exacerbations, other adverse outcomes and multimorbidity, while also considering the patient’s preferences and goals. Non-modifiable risk factors, such as a history of past ICU admission, should also be documented.

For many patients in primary care, achieving good symptom control is a good guide to a reduced risk of exacerbations. 222 When ICSs were introduced into asthma management, large improvements were observed in symptom control and lung function, and exacerbations and asthma-related mortality also decreased.

However, patients with few or intermittent symptoms may be still at risk of severe exacerbations 182 (Box 2-2B, p.37). In addition, some patients continue to have exacerbations despite well-controlled symptoms, and for patients with ongoing symptoms, side-effects may be an issue if ICS doses continue to be stepped up. Therefore, in control-based management, both domains of asthma control (symptom control and future risk; Box 2-2, p.37) should be considered when choosing asthma treatment and reviewing the response. 38,84

52
Box 3-3. The asthma management cycle for personalized asthma care

Personalized asthma management involves a continual cycle of assessment, adjustment of treatment and review (Box 3-2, p.50):

- **ASSESS** the patient's symptom control and their risk factors for exacerbations, for decline in lung function and for medication adverse effects (Box 2-2, p.37), with particular attention to inhaler technique and adherence. Assess comorbidities and the patient's goals and preferences, and confirm the diagnosis of asthma if not yet done.

- **ADJUST** the patient's management, based on these assessments. This includes treatment of modifiable risk factors (Box 3-5, p.55) and comorbidities (Section 6, p.117), relevant non-pharmacologic strategies (Box 3-6, p.57), education and skills training (Section 5, p.108), and adjustment of medication as required (Section 4, p.67). For adults and adolescents, the preferred controller and reliever treatment across all steps is with combination ICS formoterol, as shown in GINA Track 1 (Box 4-6, p.77).

- **REVIEW** the patient in line with the goals of treatment (Box 3-2, p.50), reassess factors affecting symptoms, risk of adverse outcomes and patient satisfaction, arrange further investigations if needed, and readjust treatment if needed.

See list of abbreviations (p.11).

Choosing between asthma treatment options

At each treatment step in asthma management, different medication options are available that, although not of identical efficacy, may be alternatives for controlling asthma. Different considerations apply to recommendations or choices made for broad populations compared with those for individual patients (Box 3-4, p.54):

- **Population-level medication choices**: Population-level medication choices are often applied by bodies such as national formularies or managed care organizations. Population-level recommendations aim to represent the best option for most patients in the particular population. At each treatment step, ‘preferred’ controller and reliever regimens are recommended that provide the best benefit-to-risk ratio for both symptom control and risk reduction. Choice of the preferred controller and/or preferred reliever is based on evidence from efficacy studies (highly controlled studies in well-characterized populations) and effectiveness studies (from pragmatically controlled studies, or studies in broader populations, or strong observational data), with a particular focus on symptoms and exacerbation risk. Safety and relative cost are also considered. In Step 5, there are different population-level recommendations depending on the inflammatory phenotype, Type 2 or non-Type 2.

- In the treatment figure for adults and adolescents (Box 4-6, p.77), the options are shown in two ‘tracks’. **Track 1**, with as-needed low-dose ICS-formoterol as the reliever, is the preferred approach for most patients, based on evidence of overall lower exacerbation risk and similar symptom control, and a simpler regimen for stepping...
treatment up and down as needed, compared with treatments in Track 2 in which the reliever is short-acting beta\textsubscript{2} agonist (SABA) or, in some cases, combination ICS-SABA (for more details, see Section 4, p.67).

- **Patient-level medication choices:** Treatment choices for individual patients also take into account any patient characteristics or phenotype, or any environmental exposures, that may predict their risk of exacerbations or other adverse outcomes, or a clinically important difference in their response compared with other patients, together with assessment of multimorbidity, the patient’s goals and preferences, and practical issues such as cost, ability to use the medication and adherence (see Box 3-3, p.53). For factors guiding the choice of inhaler, see Section 5 (p.108).

The extent to which asthma treatment can be individualized according to patient characteristics or phenotypes depends on the health system, the clinical context, the potential magnitude of difference in outcomes, cost and available resources.

Box 3-4. Population-level versus patient-level decisions about asthma treatment

<table>
<thead>
<tr>
<th>Choosing between treatment options at a population level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e.g., national formularies, health maintenance organizations, national guidelines)</td>
</tr>
</tbody>
</table>

The ‘preferred’ medication at each step is the best treatment for most patients, based on:

- **Efficacy**
- **Effectiveness**
- **Safety**
- **Availability and cost at the population level.**

Mainly based on evidence about symptoms and exacerbations (from randomized controlled trials, pragmatic studies and strong observational data).

For Steps 1–5, there are different population-level recommendations by age-group (adults/adolescents, children 6–11 years, children 5 years and younger). In Step 5, there are also different population-level recommendations depending on the inflammatory phenotype, Type 2 or non-Type 2.

<table>
<thead>
<tr>
<th>Choosing between controller options for individual patients</th>
</tr>
</thead>
</table>

Use shared decision-making with the patient or parent/caregiver to discuss the following:

1. **Preferred treatment** (as above) based on evidence for symptom control and risk reduction

2. **Patient characteristics or phenotype:**
 - Does the patient have any features that predict differences in their future risk or treatment response, compared with other patients (e.g., smoker; history of exacerbations, blood eosinophilia or high FeNO; environmental exposures)? (Box 2-2B, p.37)
 - Are there any modifiable risk factors or multimorbidity that may affect treatment outcomes? (Box 2-2B, p.37)

3. **Patient views:**
 - What are the patient’s goals, beliefs and concerns about asthma and medications?

4. **Practical issues:**
 - For the preferred controller and reliever, which inhaler(s) are available to the patient?
 - Inhaler technique – can the patient use the inhaler correctly after training?
 - Adherence – how often is the patient likely to take the medication?
 - Cost to patient – can the patient afford the medication?
 - Which of the available inhalers has the lowest environmental impact? (see p.108).
Minimizing adverse effects of medication

Reduce the potential for local and/or systemic side-effects of inhaled medications by:

- Ensuring correct inhaler technique (Box 5-2, p.110)
- Reminding patients to rinse and spit out after using ICS, and, after good asthma control has been maintained for 3 months
- Finding each patient’s minimum effective dose of ICS-containing therapy (the lowest dose that will, in conjunction with an action plan, maintain good symptom control and minimize exacerbations, Box 4-13, p.102)
- Checking for drug interactions particularly with cytochrome P450 inhibitors (see Risk factors for medication side-effects, p.42).

To reduce the need for OCS, with its multiple cumulative adverse effects, optimize inhaled therapy, including switching treatment to GINA Track 1 with anti-inflammatory reliever therapy (if available). Anti-inflammatory reliever treatment alone (AIR-only) markedly reduces the risk of severe exacerbations requiring OCS compared with SABA alone, and maintenance-and-reliever therapy (MART) with ICS-formoterol reduces the risk of severe exacerbations requiring OCS compared with the same or higher dose of ICS or ICS-LABA, or compared with usual care. Treating modifiable risk factors (Box 3-5, p.55) and comorbidities (Section 6, p.117) may also reduce the risk of exacerbations and use of OCS (Box 9-3, p.165).

Managing other modifiable risk factors

Some patients continue to experience exacerbations even with maximal doses of current treatment. Having even one exacerbation increases the risk that a patient will have another within the next 12 months. There is increasing research interest in identifying at-risk patients (Box 2-2B, p.37), and in investigating new strategies to further reduce exacerbation risk.

In clinical practice, exacerbation risk can be reduced both by optimizing asthma medications, and by identifying and treating modifiable risk factors (Box 3-5, p.55). Not all risk factors require or respond to a step up in controller treatment.

Box 3-5. Treating potentially modifiable risk factors to reduce exacerbations and minimize OCS use

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Treatment strategy</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any patient with one or more risk factors for exacerbations (including poor symptom control)</td>
<td>Ensure patient is prescribed an ICS-containing treatment.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Switch to a regimen with an anti-inflammatory reliever (ICS-formoterol or ICS-SABA) if available, as this reduces the risk of severe exacerbations compared with if the reliever is SABA.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ensure patient has a written action plan appropriate for their health literacy.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Review patient more frequently than low-risk patients.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Check inhaler technique and adherence frequently; correct as needed.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Identify and manage any modifiable risk factors (Box 2-2, p.37).</td>
<td>D</td>
</tr>
<tr>
<td>≥1 severe exacerbation in last year</td>
<td>Switch to a regimen with an anti-inflammatory reliever (as-needed ICS-formoterol or ICS-SABA) if available, as this reduces the risk of severe exacerbations compared with if the reliever is SABA.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Consider stepping up treatment if no modifiable risk factors.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Identify any avoidable triggers for exacerbations.</td>
<td>C</td>
</tr>
<tr>
<td>Exposure to tobacco smoke or e-cigarettes</td>
<td>Encourage smoking cessation by patient/family; provide advice and resources (see Box 3-6, p.57).</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Consider higher dose of ICS if asthma poorly controlled.</td>
<td>B</td>
</tr>
<tr>
<td>Risk factor</td>
<td>Treatment strategy</td>
<td>Evidence</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Low FEV₁, especially if <60% predicted</td>
<td>Address problems with adherence and inhaler technique</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Consider trial of 3 months' treatment with high-dose ICS.</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Exclude other lung disease, e.g., COPD.</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Refer for expert advice if no improvement.</td>
<td>D</td>
</tr>
<tr>
<td>Obesity</td>
<td>Provide strategies for weight reduction</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Distinguish asthma symptoms from symptoms due to deconditioning, mechanical restriction, and/or sleep apnea.</td>
<td>D</td>
</tr>
<tr>
<td>Major psychological problems</td>
<td>Arrange mental health assessment.</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Help patient to distinguish between symptoms of anxiety and asthma; provide advice about management of panic attacks.</td>
<td>D</td>
</tr>
<tr>
<td>Major socioeconomic problem</td>
<td>Identify most cost-effective ICS-based regimen based on local costs.</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Optimize inhaler technique to maximize benefit from available medications.</td>
<td>D</td>
</tr>
<tr>
<td>Confirmed food allergy</td>
<td>Appropriate food avoidance; anaphylaxis action plan; injectable epinephrine; refer for expert advice.</td>
<td>A</td>
</tr>
<tr>
<td>Occupational or domestic exposure to irritants</td>
<td>Remove from exposure as soon as possible.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Refer for expert advice as soon as possible.</td>
<td>D</td>
</tr>
<tr>
<td>Allergen exposure if sensitized</td>
<td>Consider trial of simple avoidance strategies if there is evidence for their effectiveness (see p.61); consider cost.</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Consider step up of asthma treatment if exposure is unavoidable.</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Consider adding SLIT in symptomatic HDM-sensitive adults or adolescents with partly-controlled asthma despite ICS, provided FEV₁ is >70% predicted.</td>
<td>A</td>
</tr>
<tr>
<td>Sputum eosinophilia despite medium/high ICS (few centers)</td>
<td>Increase ICS dose, independent of level of symptom control.</td>
<td>A*</td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11). * Based on evidence from relatively small studies in selected populations. Also see Box 3-6 (p.57) and Non-pharmacological strategies.
NON-PHARMACOLOGICAL STRATEGIES

In addition to pharmacological treatments, other strategies should be considered where relevant, to assist in improving symptom control and/or reducing future risk. The advice and evidence level are summarized in Box 3-6, with more detail on the following pages.

Box 3-6. Non-pharmacological interventions – summary (see following text for details)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Advice/recommendation</th>
<th>Evidence</th>
</tr>
</thead>
</table>
| Cessation of smoking, environmental tobacco exposure (ETS) and vaping | • At every visit, strongly encourage people with asthma who smoke or vape to quit. Provide access to counseling and smoking cessation programs (if available).
 • Advise parents/caregivers of children with asthma not to smoke or vape, and not to allow smoking or vaping in rooms or cars that their children use.
 • Strongly encourage people with asthma to avoid environmental smoke exposure.
 • Assess smokers/ex-smokers for COPD or overlapping features of asthma and COPD (asthma+COPD, Section 7, p.131), as additional treatment strategies may be required. | A |
| Physical activity | • Encourage people with asthma to engage in regular physical activity for its general health benefits.
 • Provide advice about prevention of exercise-induced bronchoconstriction with low-dose ICS-formoterol used as needed and before exercise, or with regular daily ICS.
 • Provide advice about prevention of breakthrough exercise-induced bronchoconstriction with:
 • warm-up before exercise
 • SABA (or ICS-SABA) before exercise
 • low-dose ICS-formoterol before exercise (see Box 4-8, p.84).
 • Regular physical activity improves cardiopulmonary fitness, and can have a small benefit for asthma control and lung function, including with swimming in young people with asthma.
 • Physical activity interventions in adults with moderate/severe asthma is associated with improved symptoms and quality of life.
 • There is little evidence to recommend one form of physical activity over another for people with asthma. | A/B |
| Pulmonary rehabilitation programs | • Structured outpatient pulmonary rehabilitation programs can improve functional exercise capacity (6-minute walk) and quality of life. | A |
| Avoidance of occupational or domestic exposures to allergens or irritants | • Ask all patients with adult-onset asthma about their work history and other exposures to irritant gases or particles, including at home.
 • In management of occupational asthma, identify and eliminate occupational sensitizers as soon as possible, and remove sensitized patients from any further exposure to these agents.
 • Patients with suspected or confirmed occupational asthma should be referred promptly for expert assessment and advice, if available. | D/A |
Non-pharmacological interventions – summary

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Advice/recommendation</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoidance of medications that may make asthma worse</td>
<td>• Always ask about asthma before prescribing NSAIDs, and advise patients to stop using them if asthma worsens.</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>• Always ask people with asthma about concomitant medications.</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>• Aspirin and NSAIDs (non-steroidal anti-inflammatory drugs) are not generally contraindicated unless there is a history of previous reactions to these agents (see p.128).</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>• Decide about prescription of oral or ophthalmic beta-blockers on a case-by-case basis. Initiate treatment under close medical supervision by a specialist.</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>• If cardioselective beta-blockers are indicated for acute coronary events, asthma is not an absolute contra-indication, but the relative risks/benefits should be considered.</td>
<td>D</td>
</tr>
<tr>
<td>Healthy diet</td>
<td>• Encourage patients with asthma to consume a diet high in fruit and vegetables for its general health benefits.</td>
<td>A</td>
</tr>
<tr>
<td>Avoidance of indoor allergens</td>
<td>• Allergen avoidance is not recommended as a general strategy in asthma.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>• For sensitized patients, there is limited evidence of clinical benefit for asthma in most circumstances with single-strategy indoor allergen avoidance.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>• Remediation of dampness or mold in homes reduces asthma symptoms and medication use in adults.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>• For patients sensitized to house dust mite and/or pets, there is limited evidence of clinical benefit for asthma with avoidance strategies (only in children).</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>• Allergen avoidance strategies are often complicated and expensive, and there are no validated methods for identifying those who are likely to benefit.</td>
<td>D</td>
</tr>
<tr>
<td>Weight reduction</td>
<td>• Include weight reduction in the treatment plan for obese patients with asthma.</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>• For obese adults with asthma a weight reduction program plus twice-weekly aerobic and strength exercises is more effective for symptom control than weight reduction alone.</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>• The greatest improvement in asthma outcomes with weight reduction is seen with bariatric surgery.</td>
<td>A</td>
</tr>
<tr>
<td>Breathing exercises</td>
<td>• Breathing exercises may be a useful supplement to asthma pharmacotherapy for symptoms and quality of life, but they do not reduce exacerbation risk or have consistent effects on lung function.</td>
<td>A</td>
</tr>
<tr>
<td>Avoidance of indoor air pollution</td>
<td>• Encourage people with asthma to use non-polluting heating and cooking sources, and for sources of pollutants to be vented outdoors where possible.</td>
<td>B</td>
</tr>
<tr>
<td>Avoidance of outdoor allergens</td>
<td>• For sensitized patients, when pollen and mold counts are highest, closing windows and doors, remaining indoors, and using air conditioning may reduce exposure to outdoor allergens.</td>
<td>D</td>
</tr>
</tbody>
</table>
Box 3-6 (continued). Non-pharmacological interventions - summary

Dealing with emotional stress	• Encourage patients to identify goals and strategies to deal with emotional stress if it makes their asthma worse.	D
• There is insufficient evidence to support one stress-reduction strategy over another, but relaxation strategies and breathing exercises may be helpful.	B	
• Arrange a mental health assessment for patients with symptoms of anxiety or depression.	D	

| Addressing social risk | • In US studies, comprehensive social risk interventions were associated with reduced emergency department visits and hospitalizations for children. Studies from other countries and settings are needed. | A |

| Avoidance of outdoor air pollutants/weather conditions | • During unfavorable environmental conditions (very cold weather or high air pollution) it may be helpful, if feasible, to stay indoors in a climate-controlled environment, and to avoid strenuous outdoor physical activity; and to avoid polluted environments during viral infections, if feasible. | D |

Avoidance of foods and food chemicals	• Food avoidance should not be recommended unless an allergy or food chemical sensitivity has been clearly demonstrated, usually by carefully supervised oral challenges.	D
• For patients with confirmed food allergy, refer for specialist advice if available.	D	
• For patients with confirmed food allergy, food allergen avoidance may reduce asthma exacerbations.	D	
• If food chemical sensitivity is confirmed, complete avoidance is not usually necessary, and sensitivity often decreases when asthma control improves.	D	

See list of abbreviations (p.11). Interventions with highest level evidence are shown first.

Cessation of smoking and vaping and avoidance of environmental tobacco smoke

Cigarette smoking has multiple deleterious effects in people with established asthma, in addition to its other well-known effects such as increased risk of lung cancer, chronic obstructive pulmonary disease (COPD) and cardiovascular disease; and, with exposure in pregnancy, increased risk of asthma and lower respiratory infections in children.

In people with asthma (children and adults), exposure to environmental tobacco smoke increases the risk of hospitalization and poor asthma control. Active smoking is associated with increased risk of poor asthma control, hospital admissions and, in some studies, death from asthma; increased rate of decline of lung function and may lead to COPD; and reduced the effectiveness of inhaled and oral corticosteroids. After smoking cessation, lung function improves and airway inflammation decreases. Reduction of environmental tobacco smoke exposure improves asthma control and reduces hospital admissions in adults and children. Use of e-cigarettes (vaping) is associated with an increased risk of asthma symptoms or diagnosis and with an increased risk of asthma exacerbations.

Advice

- At every visit, strongly encourage people with asthma who smoke to quit. They should be provided with access to counseling and, if available, to smoking cessation programs (Evidence A).
- Strongly encourage people with asthma who vape to quit.
- Strongly encourage people with asthma to avoid environmental smoke exposure (Evidence B).
- Advise parents/caregivers of children with asthma not to smoke or vape and not to allow smoking or vaping in rooms or cars that their children use (Evidence A).
- Assess patients with a >10 pack-year smoking history for COPD or for asthma+COPD, as additional treatment strategies may be required (see Section 7, p.131).
Physical activity

For people with asthma, as in the general population, regular moderate physical activity has important health benefits including reduced cardiovascular risk and improved quality of life. There is some evidence that aerobic exercise training can have a small beneficial effect on asthma symptom control and lung function, although not airway inflammation. In physically inactive adults with moderate/severe asthma, physical activity interventions were associated with reduced symptoms and improved quality of life. Further studies are needed to identify the optimal regimen. Improved cardiopulmonary fitness may reduce the risk of dyspnea unrelated to airflow limitation being mistakenly attributed to asthma. In one study of non-obese patients with asthma, high intensity interval training together with a diet with high protein and low glycemic index improved asthma symptom control, although no benefit on lung function was seen. In young people with asthma, swimming training is well tolerated and leads to increased lung function and cardio-pulmonary fitness; however, there are some concerns about exposure to chlorine and trichloramine with indoor pools.

Exercise is an important cause of asthma symptoms for many asthma patients, but EIB can usually be reduced with maintenance ICS. Breakthrough exercise-related symptoms can be managed with warm-up before exercise, and/or by taking SABA or low-dose ICS-formoterol before or during exercise.

Advice
- Encourage people with asthma to engage in regular physical activity because of its general health benefits (Evidence A). However, regular physical activity confers no specific benefit on lung function or asthma symptoms per se, with the exception of swimming in young people with asthma (Evidence B). There is insufficient evidence to recommend one form of physical activity over another (Evidence D).
- Provide patients with advice about prevention and management of exercise-induced bronchoconstriction including with daily treatment with ICS (Evidence A) plus SABA as-needed and pre-exercise (Evidence A), or treatment with low-dose ICS-formoterol as-needed and before exercise (Evidence B), with warm-up before exercise if needed (Evidence A). For doses of ICS-formoterol, see Box 4-8, p.84. For patients prescribed as-needed ICS-SABA, this can also be used before exercise.

Pulmonary rehabilitation

A systematic review and meta-analysis found that pulmonary rehabilitation programs of 4–12 weeks’ duration that included aerobic training, nutritional advice, psychological counselling, and education in adults with asthma had little or no effect on asthma symptom control, but they achieved clinically meaningful short-term improvements in functional exercise capacity and quality of life (moderate certainty of evidence). It is not known whether these benefits continue long-term after the completion of the program.

Advice
- For asthma patients who have limited exercise tolerance, or have dyspnoea due to persistent airflow limitation, refer for pulmonary rehabilitation, if available.

Avoidance of occupational or domestic exposures

Occupational exposures to allergens or sensitizers account for a substantial proportion of the incidence of adult-onset asthma. Once a patient has become sensitized to an occupational allergen, the level of exposure necessary to induce symptoms may be extremely low, and resulting exacerbations become increasingly severe. Attempts to reduce occupational exposure have been successful, especially in industrial settings. Cost-effective minimization of latex sensitization can be achieved by using non-powdered low-allergen gloves instead of powdered latex gloves.

Advice
- Ask all patients with adult-onset asthma about their work history and other exposures to inhaled allergens or irritants, including at home (Evidence D).
- In management of occupational asthma, identify and eliminate occupational sensitizers as soon as possible, and remove sensitized patients from any further exposure to these agents (Evidence A).
- Patients with suspected or confirmed occupational asthma should be referred for expert assessment and advice, if available, because of the economic and legal implications of the diagnosis (Evidence A).
Avoidance of medications that may make asthma worse

Aspirin and other NSAIDs can cause severe exacerbations. Beta-blocker drugs, including topical ophthalmic preparations, may cause bronchospasm and have been implicated in some asthma deaths. However, beta-blockers have a proven benefit in the management of cardiovascular disease. People with asthma who have had an acute coronary event and received beta-blockers within 24 hours of hospital admission have been found to have lower in-hospital mortality rates than those who did not receive beta-blockers.

Advice

- Always ask people with asthma about concomitant medications, including eyedrops (Evidence D).
- Always ask about asthma and previous reactions before prescribing NSAIDs, and advise patients to stop using these medications if asthma worsens.
- Aspirin and NSAIDs are not generally contraindicated in asthma unless there is a history of previous reactions to these agents (Evidence A). (See Aspirin-exacerbated respiratory disease, p.128).
- For people with asthma who may benefit from oral or ophthalmic beta-blocker treatment, a decision to prescribe these medications should be made on a case-by-case basis, and treatment should only be initiated under close medical supervision by a specialist (Evidence D).
- Asthma should not be regarded as an absolute contraindication to use cardioselective beta-blockers when they are indicated for acute coronary events, but the relative risks and benefits should be considered (Evidence D). The prescribing physician and patient should be aware of the risks and benefits of treatment.

Avoidance of indoor allergens

Because many asthma patients react to multiple factors that are ubiquitous in the environment, avoiding these factors completely is usually impractical and very burdensome for the patient. Inhaled corticosteroid-containing medications to maintain good asthma control have an important role because patients are often less affected by environmental factors when their asthma is well controlled.

There is conflicting evidence about whether measures to reduce exposure to indoor allergens are effective at reducing asthma symptoms. The majority of single interventions have failed to achieve a sufficient reduction in allergen load to lead to clinical improvement. It is likely that no single intervention will achieve sufficient benefits to be cost effective (Box 3-7, p.62). One study of insecticidal bait in homes eradicated cockroaches for a year and led to a significant decrease in symptoms, improvement in pulmonary function, and less health care use for children with moderate to severe asthma.

House dust mites

HDM live and thrive in many sites throughout the house, so they are difficult to reduce and impossible to eradicate. A systematic review of multi-component interventions to reduce allergens, including HDM, showed no benefit for asthma in adults and a small benefit for children. One study that used a rigorously applied integrated approach to HDM control led to a significant decrease in symptoms, medication use and improvement in pulmonary function for children with HDM sensitization and asthma. However, this approach is complicated and expensive and is not generally recommended. A study in HDM-sensitized children recruited after emergency department presentation showed a decrease in emergency department visits, but not oral corticosteroids, with the use of mite-impermeable encasement of the mattress, pillow and duvet.

Furred pets

Complete avoidance of pet allergens is impossible for sensitized patients as these allergens are ubiquitous outside the home in schools, public transport, and even cat-free buildings, probably transferred on clothes. Although removal of such animals from the home of a sensitized patient is encouraged, it can be many months before allergen levels decrease, and the clinical effectiveness of this and other interventions remains unproven.
Box 3-7. Effectiveness of avoidance measures for indoor allergens

<table>
<thead>
<tr>
<th>Allergen and avoidance measure</th>
<th>Degree of effectiveness (evidence level)</th>
<th>Reduction in allergen levels</th>
<th>Clinical benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>House dust mites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Encase bedding in impermeable covers</td>
<td>Some (A)</td>
<td>Adults - none (A)</td>
<td>Children - some (A)</td>
</tr>
<tr>
<td>• Wash bedding on hot cycle (55–60°C)</td>
<td>Some (C)</td>
<td>None (D)</td>
<td></td>
</tr>
<tr>
<td>• Replace carpets with hard flooring</td>
<td>Some (B)</td>
<td>None (D)</td>
<td></td>
</tr>
<tr>
<td>• Acaricides and/or tannic acid</td>
<td>Little (C)</td>
<td>None (D)</td>
<td></td>
</tr>
<tr>
<td>• Minimize objects that accumulate dust</td>
<td>None (D)</td>
<td>None (D)</td>
<td></td>
</tr>
<tr>
<td>• Vacuum cleaners with integral HEPA filter and double-thickness bags</td>
<td>Little (C)</td>
<td>None (D)</td>
<td></td>
</tr>
<tr>
<td>• Remove, hot wash, or freeze soft toys</td>
<td>None (D)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Pets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Remove cat/dog from the home</td>
<td>Little (C)</td>
<td>None (D)</td>
<td></td>
</tr>
<tr>
<td>• Keep pet from the main living areas/bedrooms</td>
<td>Little (C)</td>
<td>None (D)</td>
<td></td>
</tr>
<tr>
<td>• HEPA-filter air cleaners</td>
<td>Some (B)</td>
<td>None (A)</td>
<td></td>
</tr>
<tr>
<td>• Wash pet</td>
<td>Little (C)</td>
<td>None (D)</td>
<td></td>
</tr>
<tr>
<td>• Replace carpets with hard flooring</td>
<td>None (D)</td>
<td>None (D)</td>
<td></td>
</tr>
<tr>
<td>• Vacuum cleaners with integral HEPA filter and double-thickness bags</td>
<td>None (D)</td>
<td>None (D)</td>
<td></td>
</tr>
<tr>
<td>Cockroaches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bait plus professional extermination of cockroaches</td>
<td>Minimal (D)</td>
<td>None (D)</td>
<td></td>
</tr>
<tr>
<td>• Baits placed in homes</td>
<td>Some (D)</td>
<td>Some (B)</td>
<td></td>
</tr>
<tr>
<td>Rodents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Integrated pest management strategies</td>
<td>Some (B)</td>
<td>Some (B)</td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Remediation of dampness or mold in homes</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>• Air filters, air conditioning</td>
<td>Some (B)</td>
<td>None (D)</td>
<td></td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11). This table is adapted from Custovic et al.261

Levels of evidence (A–D) defined in Methodology, Table A (p.17)

Pest rodents

Symptomatic patients suspected of domestic exposure to pest rodents should be evaluated with skin prick tests or specific IgE, as exposure may not be apparent unless there is an obvious infestation.266 High-level evidence for the effectiveness of removing rodents is lacking, as most integrated pest management interventions also remove other allergen sources;266 one non-sham-controlled study showed comparable clinical improvement with pest reduction education and integrated pest management.257

Cockroaches

Avoidance measures for cockroaches are only partially effective in removing residual allergens258 and evidence of clinical benefit is lacking.
Fungi

Fungal exposure has been associated with asthma exacerbations. The number of fungal spores can best be reduced by removing or cleaning mold-laden objects. Air conditioners and dehumidifiers may be used to reduce humidity to less than 50% and to filter large fungal spores. However, air conditioning and sealing of windows have also been associated with increases in fungal and HDM allergens.

Advice

- Allergen avoidance is not recommended as a general strategy for people with asthma (Evidence A).
- For sensitized patients, although it would seem logical to attempt to avoid allergen exposure in the home, there is little evidence for clinical benefit with single avoidance strategies (Evidence A) and only limited evidence for benefit with multi-component avoidance strategies (in children) (Evidence B).
- Although allergen avoidance strategies may be beneficial for some sensitized patients (Evidence B), they are often complicated and expensive, and there are no validated methods for identifying those who are likely to benefit (Evidence D).

Healthy diet

In the general population, a diet high in fresh fruit and vegetables has many health benefits, including prevention of many chronic diseases and forms of cancer. Many epidemiological studies report that a high fruit and vegetable diet is associated with a lower risk of asthma and lung function decline. There is some evidence that increasing fruit and vegetable intake leads to an improvement in asthma control and a reduced risk of exacerbations.

Advice

- Encourage patients with asthma to consume a diet high in fruit and vegetables for its general health benefits (Evidence A).

Weight reduction for obese patients

Asthma can be more difficult to control in obese patients, the risk of exacerbations is greater, and response to ICS may be reduced. There is limited evidence about the effect of weight loss on asthma control. Studies have ranged from dietary restriction to multifactorial interventions with exercise training and cognitive behavioral therapy, but populations have generally been small, and interventions and results have been heterogeneous. In some studies, weight loss has improved asthma control, lung function and health status, and reduced medication needs in obese patients with asthma. The most striking results have been observed after bariatric surgery, but even 5–10% weight loss with diet, with or without exercise, can lead to improved asthma control and quality of life.

Advice

- Include weight reduction in the treatment plan for obese patients with asthma (Evidence B). Increased exercise alone appears to be insufficient (Evidence B).

Breathing exercises

A systematic review of studies of breathing and/or relaxation exercises in adults with asthma and/or dysfunctional breathing, including the Buteyko method and the Papworth method, reported improvements in symptoms, quality of life and/or psychological measures, but with no consistent effect on lung function and no reduction in risk of exacerbations.

Studies of non-pharmacological strategies, such as breathing exercises, can only be considered high quality when control groups are appropriately matched for level of contact with health professionals and for asthma education. A study of two physiologically contrasting breathing exercises, which were matched for contact with health professionals and instructions about rescue inhaler use, showed similar improvements in reliever use and ICS dose after down-titration in both groups. This suggests that perceived improvement with breathing exercises may be largely due to factors such as relaxation, voluntary reduction in use of rescue medication, or engagement of the patient in their care. The cost of some commercial programs may be a potential limitation.

Breathing exercises used in some of these studies are available at www.breathestudy.co.uk and www.woolcock.org.au/resources/breathing-techniques-asthma.
Advice

- Breathing exercises may be considered as a supplement to conventional asthma management strategies for symptoms and quality of life, but they do not improve lung function or reduce exacerbation risk (Evidence A).

Avoidance of indoor air pollution

In addition to passive and active smoking, other major indoor air pollutants that are known to impact on respiratory health include nitric oxide, nitrogen oxides, carbon monoxide, carbon dioxide, sulfur dioxide, formaldehyde, and biologicals (endotoxin). Sources include cooking and heating devices using gas and solid biomass fuels, particularly if they are not externally flued (vented). Installation of non-polluting, more effective heating (heat pump, wood pellet burner, flued gas) in the homes of children with asthma does not significantly improve lung function but significantly reduces symptoms of asthma, days off school, healthcare utilization, and pharmacist visits. Air filters can reduce fine particle exposure, but there is no consistent effect on asthma outcomes.

Advice

- Encourage people with asthma to use non-polluting heating and cooking sources, and for sources of pollutants to be vented outdoors where possible (Evidence B).

Strategies for dealing with emotional stress

Emotional stress may lead to asthma exacerbations in children and adults. Hyperventilation associated with laughing, crying, anger, or fear can cause airway narrowing. Panic attacks have a similar effect. However, it is important to note that asthma is not primarily a psychosomatic disorder.

During stressful times, medication adherence may also decrease.

Advice

- Encourage patients to identify goals and strategies to deal with emotional stress if it makes their asthma worse (Evidence D).
- There is insufficient evidence to support one strategy over another, but relaxation strategies and breathing exercises may be helpful in reducing asthma symptoms (Evidence B).
- Arrange a mental health assessment for patients with symptoms of anxiety or depression (Evidence D).

Interventions addressing social risks

A systematic review of social risk intervention studies based in the USA found that interventions that addressed these challenges, including health and health care, neighborhood and built environment, and social and community context, were associated with a marked reduction in pediatric emergency department visits and hospitalizations for asthma. Data are needed from studies in other countries and other socioeconomic settings.

Avoidance of outdoor allergens

For patients sensitized to outdoor allergens such as pollens and molds, these are impossible to avoid completely.

Advice

- For sensitized patients, closing windows and doors, remaining indoors when pollen and mold counts are highest, and using air conditioning may reduce exposure (Evidence D).
- The impact of providing information in the media about outdoor allergen levels is difficult to assess.

Avoidance of outdoor air pollution

Meta-analysis of epidemiological studies showed a significant association between air pollutants such as ozone, nitrogen oxides, acidic aerosols, and particulate matter and symptoms or exacerbations of asthma, including emergency department visits and hospitalizations. Use of digital monitoring identified a lag of 0–3 days between higher levels of multiple pollutants and increased asthma medication use. Proximity to main roads at home and school is associated with greater asthma morbidity. Certain weather and atmospheric conditions like thunderstorms may trigger asthma exacerbations by a variety of mechanisms, including dust and pollution, by increasing the level of respirable allergens, and causing changes in temperature and/or humidity. Reduction of outdoor air pollutants usually requires national or local policy changes. For example, short-term traffic restrictions imposed in
Beijing during the 2008 Olympics reduced pollution and was associated with a significant fall in asthma outpatient visits.

Advice

- In general, when asthma is well controlled, there is no need for patients to modify their lifestyle to avoid unfavorable outdoor conditions (air pollutants, weather).
- During unfavorable environmental conditions (very cold weather, low humidity or high air pollution), it may be helpful to avoid strenuous outdoor physical activity and stay indoors in a climate-controlled environment, if possible, and to avoid polluted environments during viral infections (Evidence D).

Avoidance of food and food chemicals

Food allergy as an exacerbating factor for asthma is uncommon and occurs primarily in young children. Confirmed food allergy is a risk factor for asthma-related mortality.

Food chemicals, either naturally occurring or added during processing, may also trigger asthma symptoms especially when asthma is poorly controlled. Sulfites (common food and drug preservatives found in such foods as processed potatoes, shrimp, dried fruits, beer, and wine) have often been implicated in causing severe asthma exacerbations. However, the likelihood of a reaction is dependent on the nature of the food, the level and form of residual sulfite, the sensitivity of the patient, and the mechanism of the sulfite-induced reaction. There is little evidence to support any general role for other dietary substances including benzoate, the yellow dye, tartrazine, and monosodium glutamate in worsening asthma.

Advice

- Ask people with asthma about symptoms associated with any specific foods (Evidence D).
- Food avoidance should not be recommended unless an allergy or food chemical sensitivity has been clearly demonstrated (Evidence D), usually by carefully supervised oral challenges.
- Patients with suspected or confirmed food allergy should be referred for expert advice about management of asthma and anaphylaxis (Evidence D).
- If food allergy is confirmed, food allergen avoidance can reduce asthma exacerbations (Evidence D).
- If food chemical sensitivity is confirmed, complete avoidance is not usually necessary, and sensitivity often decreases when overall asthma control improves (Evidence D).
REFERRAL FOR EXPERT ADVICE

For most patients asthma can usually be managed in primary care, but some clinical situations warrant referral for expert advice regarding diagnosis and/or management (Box 3-8). This list is based on consensus. Indications for referral may vary, because the level at which asthma care is mainly delivered (primary care or specialist care) varies substantially between countries.

Box 3-8. Indications for considering referral for expert advice, where available

Difficulty confirming the diagnosis of asthma
- Patient has symptoms of chronic infection, or features suggesting a cardiac or other non-pulmonary cause (Box 1-3, p.27) (immediate referral recommended).
- Diagnosis is unclear, even after a trial of therapy with ICS or systemic corticosteroids.
- Patient has features of both asthma and COPD, and there is doubt about priorities for treatment.

Suspected occupational asthma
- Refer for confirmatory testing and identification of sensitizing or irritant agent, and specific advice about eliminating exposure and pharmacological treatment. See specific guidelines for details.

Persistent or severely uncontrolled asthma or frequent exacerbations
- Symptoms remain uncontrolled, or patient has ongoing exacerbations or low lung function despite correct inhaler technique and good adherence with Step 4 treatment (medium-dose ICS-LABA, Box 4-6, p.77). Before referral, depending on the clinical context, identify and treat modifiable risk factors (Box 2-2, p.37; Box 3-5, p.55) and comorbidities (Section 6, p.117).
- Patient frequently uses asthma-related health care, e.g., multiple ED visits or urgent primary care visits.
- For more information, see Section 8 (p.139) on difficult-to-treat and severe asthma, including a decision tree

Any risk factors for asthma-related death (see Box 9-1, p.160)
- Near-fatal asthma attack (ICU admission, or mechanical ventilation for asthma) at any time in the past
- Suspected or confirmed anaphylaxis or food allergy in a patient with asthma

Evidence of, or risk of, significant treatment side-effects
- Significant side-effects from treatment
- Need for long-term oral corticosteroid use
- Frequent courses of oral corticosteroids (e.g., two or more courses a year)

Symptoms suggesting complications or sub-types of asthma
- e.g., aspirin-exacerbated respiratory disease (p.128); allergic bronchopulmonary aspergillosis (ABPA) (p.129)

Additional reasons for referral in children 6–11 years
- Doubts about diagnosis of asthma e.g., respiratory symptoms are not responding well to treatment in a child who was born prematurely
- Symptoms or exacerbations that remain uncontrolled despite medium-dose ICS (Box 4-2B, p.71) with correct inhaler technique and good adherence
- Suspected side-effects of treatment (e.g., growth delay)
- Concerns about the child’s welfare or well-being

See list of abbreviations (p.11). For indications for referral in children 0–5 years, see p.185.
4. Medications and strategies for adults, adolescents and children
6–11 years

KEY POINTS

- For safety, GINA does not recommend treatment of asthma in adults, adolescents or children 6–11 years with short-acting beta2 agonist (SABA) alone. Instead, they should receive inhaled corticosteroid (ICS)-containing treatment to reduce their risk of serious exacerbations and to control symptoms.

- ICS-containing treatment can be delivered either with regular daily treatment or, in adults and adolescents who have asthma symptoms less than daily and normal or mildly reduced lung function, with as-needed low-dose ICS-formoterol taken whenever needed for symptom relief. For children not likely to be adherent with maintenance ICS, the ICS can be taken whenever the child uses their SABA reliever.

- Reduction in severe exacerbations is a high priority across treatment steps, to reduce the risk and burden to patients and the burden to the health system, and to reduce the need for oral corticosteroids (OCS), which have cumulative long-term adverse effects.

- Tables of low, medium or high dose ICS do not represent equivalent potency. If a patient is switched from one medication to another, monitor them for stability.

Treatment tracks for adults and adolescents

- For clarity, the treatment figure for adults and adolescents shows two ‘tracks’, largely based on the choice of reliever. Treatment may be stepped up or down within a track using the same reliever at each step, or treatment may be switched between tracks, according to the individual patient’s needs.

- **Track 1, in which the reliever is low-dose ICS-formoterol**, is the preferred approach recommended by GINA. When a patient at any step has asthma symptoms, they use low-dose ICS-formoterol as needed for symptom relief. In Steps 3–5, they also take ICS-formoterol as regular daily treatment. This approach is preferred because it reduces the risk of severe exacerbations compared with using a SABA reliever, with similar symptom control, and because of the simplicity for patients and clinicians of needing only a single medication across treatment Steps 1–4.

- Medications and doses for Track 1 are explained in Box 4-8, p.84, including the maximum recommended total formoterol (with ICS) dose in any day for each formulation. Based on extensive evidence with budesonide-formoterol, GINA suggests that the same maximum total daily dose should apply for beclometasone-formoterol.

- **Track 2, in which the reliever is an ICS-SABA or SABA**, is an alternative if Track 1 is not possible, or if a patient is stable, with good adherence and no exacerbations in the past year on their current therapy. In Step 1, the patient takes a SABA and a low-dose ICS together for symptom relief (in combination if available, or with the ICS taken immediately after the SABA). In Steps 2–5, the reliever is a SABA or combination ICS-SABA. Before considering a SABA reliever, consider whether the patient is likely to be adherent with their ICS-containing treatment, as otherwise they would be at higher risk of exacerbations.

Steps 1 and 2 for adults and adolescents

- **Track 1**: (Steps 1–2 combined) In adults and adolescents who were considered by their clinician to have mild asthma, and were taking SABA alone or had controlled asthma on daily low-dose ICS or LTRA, treatment with as-needed-only low-dose ICS-formoterol reduced the risk of severe exacerbations and emergency department visits or hospitalizations by about two-thirds compared with SABA-only treatment. As-needed-only low-dose ICS-formoterol reduced the risk of emergency department visits and hospitalizations compared with daily ICS, with no clinically important difference in symptom control. In patients previously using SABA alone, as-needed low-dose ICS-formoterol also significantly reduced the risk of severe exacerbations needing OCS, compared with daily ICS.

- **Track 2**: Treatment with regular daily low-dose ICS plus as-needed SABA (Step 2), if taken, is highly effective in reducing asthma symptoms and reducing the risk of asthma-related exacerbations, hospitalization and death. However, adherence with ICS in the community is poor, leaving patients taking SABA alone and at increased risk.
of exacerbations. For patients with infrequent symptoms, who are likely to have very poor adherence, as-needed-only ICS-SABA with separate or combination inhalers is the best option for Step 1, although current evidence is limited to small studies that were not powered to detect differences in exacerbation rates.

Consider step-up if asthma remains uncontrolled despite good adherence and inhaler technique

- Before considering any step up, **first confirm that the symptoms are due to asthma and identify and address common problems** such as inhaler technique, adherence, allergen exposure and multimorbidity; provide patient education.

- For adults and adolescents, the preferred Step 3 treatment is the Track 1 regimen with low-dose ICS-formoterol as maintenance-and-reliever therapy (MART). This reduces the risk of severe exacerbations, with similar or better symptom control, compared with maintenance treatment using a combination of an ICS and a long-acting beta2 agonist (LABA) as controller, plus as-needed SABA. If needed, the maintenance dose of ICS-formoterol can be increased to medium (i.e., Step 4) by increasing the number of maintenance inhalations. MART is also a preferred treatment option at Steps 3 and 4 for children 6–11 years, with a lower dose ICS-formoterol inhaler.

- ICS-formoterol should not be used as the reliever for patients taking a different ICS-LABA maintenance treatment, because clinical evidence for safety and efficacy is lacking.

- Other Step 3 options for adults and adolescents in Track 2, and in children, include maintenance ICS-LABA plus as-needed SABA or plus as-needed ICS-SABA (if available) or, for children 6–11 years, medium-dose ICS plus as-needed SABA. For children, try other controller options at the same step before stepping up.

Step down to find the minimum effective treatment

- Once good asthma control has been achieved and maintained for 2–3 months, consider stepping down gradually to find the patient’s lowest treatment that controls both symptoms and exacerbations.

- Provide the patient with a written asthma action plan, monitor closely, and schedule a follow-up visit.

- Do not completely withdraw ICS unless this is needed temporarily to confirm the diagnosis of asthma.

For all patients with asthma, provide asthma education and training in essential skills

- After choosing the right class of medication for the patient, the choice of inhaler device depends on which inhalers are available for the patient for that medication, which of these inhalers the patient can use correctly after training, and their relative environmental impact. Check inhaler technique frequently.

- Provide inhaler skills training: this is essential for medications to be effective, but technique is often incorrect.

- Encourage adherence with ICS-containing medication, even when symptoms are infrequent.

- Provide training in asthma self-management (self-monitoring of symptoms and/or peak expiratory flow (PEF), written asthma action plan and regular medical review) to control symptoms and minimize the risk of exacerbations.

For patients with one or more risk factors for exacerbations

- Prescribe ICS-containing medication, preferably from Track 1 options, i.e., with as-needed low-dose ICS-formoterol as reliever; provide a written asthma action plan; and arrange review more frequently than for lower-risk patients.

- Identify and address modifiable risk factors (e.g., smoking, low lung function, over-use of SABA).

- Consider non-pharmacological strategies and interventions to assist with symptom control and risk reduction, (e.g., smoking cessation advice, breathing exercises, some avoidance strategies).

Difficult-to-treat and severe asthma (see Section 8, p.139)

- Patients who have poor symptom control and/or exacerbations, despite medium- or high-dose ICS-LABA treatment, should be assessed for contributing factors, and asthma treatment optimized.

- If the problems continue or diagnosis is uncertain, refer to a specialist center for phenotypic assessment and consideration of add-on therapy including biologics.
Allergen immunotherapy

- Allergen-specific immunotherapy may be considered as add-on therapy for patients with asthma who have clinically significant sensitization to aeroallergens.

For all patients, use your own professional judgment, and always check local eligibility and payer criteria.

CATEGORIES OF ASTHMA MEDICATIONS

The pharmacological options for long-term treatment of asthma fall into the following main categories (Box 4-1, p.70):

- **Controller medications:** in the past, this term mostly referred to medications containing ICS that were used to reduce airway inflammation, control symptoms, and reduce risks such as exacerbations and the associated decline in lung function. In GINA Track 1, controller treatment is delivered through an anti-inflammatory reliever (AIR), low-dose ICS-formoterol, taken when symptoms occur and before exercise or allergen exposure; in Steps 3–5, the patient also takes maintenance controller treatment as daily or twice-daily ICS-formoterol. This is called “maintenance-and-reliever therapy” (MART). The dose and regimen of controller medications should be optimized to minimize the risk of medication side-effects, including risks of needing OCS.

- **Reliever medications:** all patients should be provided with a reliever inhaler for as-needed relief of breakthrough symptoms, including during worsening asthma or exacerbations. They are also recommended for short-term prevention of exercise-induced bronchoconstriction (EIB).

 Relievers include the anti-inflammatory relievers ICS-formoterol and ICS-SABA, and SABA. Combination ICS-LABA with non-formoterol LABAs cannot be used as a reliever, due to a slower onset of action (e.g., ICS-salmeterol), or due to lack of safety and/or efficacy with more than once-daily use (e.g., ICS-vilanterol, ICS-indacaterol). ICS-formoterol should not be used as the reliever for patients taking maintenance ICS-LABA with a non-formoterol LABA. Over-use of SABA (e.g., dispensing of three or more 200-dose canisters in a year, corresponding to average use more than daily) increases the risk of asthma exacerbations. Regular SABA also increases the risk of poor symptom control.

- **Add-on therapies including for patients with severe asthma** (Section 8, p.139).

 When compared with medications used for other chronic diseases, most of the medications used for treatment of asthma have very favorable therapeutic ratios. See Box 4-2 (p.71) for low, medium and high ICS doses.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance treatment</td>
<td>Asthma treatment that is prescribed for use every day (or on a regularly scheduled basis)</td>
<td>Medications intended to be used continuously, even when the person does not have asthma symptoms. Examples include ICS-containing medications (ICS, ICS-LABA, ICS-LABA-LAMA), as well as LTRA† and biologic therapy. The term ‘maintenance’ describes the prescribed frequency of administration, not a particular class of asthma medicine.</td>
</tr>
<tr>
<td>Controller</td>
<td>Medication targeting both domains of asthma control (symptom control and future risk)</td>
<td>In the past, ‘controller’ was largely used for ICS-containing medications prescribed for regular daily treatment, so ‘controller’ and ‘maintenance’ became almost synonymous. However, this became confusing after the introduction of combination ICS-containing relievers for as-needed use. To avoid confusion, ‘ICS-containing treatment’ and ‘maintenance treatment’ have been substituted as appropriate where the intended meaning was unclear.</td>
</tr>
<tr>
<td>Reliever</td>
<td>Asthma inhaler taken as needed, for quick relief of asthma symptoms</td>
<td>Sometimes called rescue inhalers. As well as being used for symptom relief, reliever inhalers can also be used before exercise, to prevent exercise-induced asthma symptoms. Includes SABAs (e.g., salbutamol [albuterol], terbutaline, ICS-salbutamol), as-needed ICS-formoterol, and as-needed ICS-SABA. SABA-containing relievers should not be used for regular maintenance use, or to be taken when the person does not have asthma symptoms (except before exercise).</td>
</tr>
<tr>
<td>Anti-inflammatory reliever (AIR)</td>
<td>Reliever inhaler that contains both a low-dose ICS and a rapid-acting bronchodilator</td>
<td>Includes budesonide-formoterol, beclometasone-formoterol and ICS-salbutamol combinations. Patients can also use AIRs as needed before exercise or allergen exposure to prevent asthma symptoms and bronchoconstriction. Non-formoterol LABAs in combination with ICS cannot be used as relievers. ICS-formoterol should not be used as the reliever with maintenance ICS-non-formoterol LABAs (p.69). The anti-inflammatory effect of as-needed ICS-formoterol was demonstrated by reduction in FeNO in several studies. Some anti-inflammatory relievers can be used as-needed at Steps 1–2 as the person’s sole asthma treatment, without a maintenance treatment (‘AIR-only’ treatment). Almost all evidence for this is with ICS-formoterol. Some ICS-formoterol combinations can be used as both maintenance treatment and reliever treatment at Steps 3–5 (see MART, below). For medications and doses, see Box 4-8 (p.84).</td>
</tr>
<tr>
<td>Maintenance-and-reliever therapy (MART)</td>
<td>Treatment regimen in which the patient uses an ICS-formoterol inhaler every day (maintenance dose), and also uses the same medication as needed for relief of asthma symptoms (reliever doses)</td>
<td>MART (Maintenance-And-Reliever Therapy) can be used only with combination ICS-formoterol inhalers such as budesonide-formoterol and beclometasone-formoterol. Other ICS-formoterol inhalers can also potentially be used, but combinations of ICS with non-formoterol LABAs, or ICS-SABA, cannot be used for MART. MART is also sometimes called SMART (single-inhaler maintenance-and-reliever therapy); the meaning is the same. For medications and doses, see Box 4-8 (p.84).</td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11). †If prescribing LTRA, advise patient/caregiver about risk of neuropsychiatric adverse effects.
Box 4-2. Low, medium and high daily metered doses of inhaled corticosteroids (alone or with LABA)

This is not a table of equivalence, but suggested total daily doses for ‘low’, ‘medium’ and ‘high’ dose ICS options for adults/adolescents (Box 4-6, p.77) and children 6–11 years (Box 4-12, p.96), based on product information.

The table does NOT imply potency equivalence. For example, if you switch treatment from a ‘medium’ dose of one ICS to a ‘medium’ dose of another ICS, this may represent a decrease (or an increase) in potency, and the patient’s asthma may become unstable (or they may be at increased risk of adverse effects).

Patients should be monitored to ensure stability after any change of treatment or inhaler device. Doses and potency may also differ by country, depending on local products, inhaler devices, regulatory labelling and clinical guidelines or, for one product, with addition of a LAMA to an ICS-LABA.296

Low-dose ICS provides most of the clinical benefit of ICS for most patients with asthma. However, ICS responsiveness varies between patients, so some patients may need medium-dose ICS if their asthma is uncontrolled, or they have ongoing exacerbations, despite good adherence and correct technique with low-dose ICS (with or without LABA). **High-dose ICS** (in combination with LABA or separately) is needed by very few patients, and its long-term use is associated with an increased risk of local and systemic side-effects, which must be balanced against the potential benefits. The timing of medication use also affects outcomes, particularly for exacerbations, as seen with an anti-inflammatory reliever in GINA Track 1. For Track 1 medications and doses, see Box 4-8, p.84.

Daily doses in this table are shown as metered doses. See product information for delivered doses.

<table>
<thead>
<tr>
<th>Inhaled corticosteroid (alone or in combination with LABA)</th>
<th>Total daily ICS dose (mcg) – see notes above</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults and adolescents (12 years and older)</td>
<td></td>
</tr>
<tr>
<td>Beclometasone dipropionate (pMDI, standard particle, HFA)</td>
<td>200–500 >500–1000 >1000</td>
</tr>
<tr>
<td>Beclometasone dipropionate (DPI or pMDI, extrafine particle, HFA)</td>
<td>100–200 >200–400 >400</td>
</tr>
<tr>
<td>Budesonide (DPI, or pMDI, standard particle, HFA)</td>
<td>200–400 >400–800 >800</td>
</tr>
<tr>
<td>Ciclesonide (pMDI, extrafine particle, HFA)</td>
<td>80–160 >160–320 >320</td>
</tr>
<tr>
<td>Fluticasone furoate (DPI)</td>
<td>100</td>
</tr>
<tr>
<td>Fluticasone propionate (DPI)</td>
<td>100–250 >250–500 >500</td>
</tr>
<tr>
<td>Fluticasone propionate (pMDI, standard particle, HFA)</td>
<td>100–250 >250–500 >500</td>
</tr>
<tr>
<td>Mometasone furoate (DPI)</td>
<td>Depends on DPI device – see product information</td>
</tr>
<tr>
<td>Mometasone furoate (pMDI, standard particle, HFA)</td>
<td>200–400 >400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Children 6–11 years – see notes above (for children 5 years and younger, see Box 11-3, p.191)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beclometasone dipropionate (pMDI, standard particle, HFA)</td>
</tr>
<tr>
<td>Beclometasone dipropionate (pMDI, extrafine particle, HFA)</td>
</tr>
<tr>
<td>Budesonide (DPI, or pMDI, standard particle, HFA)</td>
</tr>
<tr>
<td>Budesonide (nebulizer)</td>
</tr>
<tr>
<td>Ciclesonide (pMDI, extrafine particle*, HFA)</td>
</tr>
<tr>
<td>Fluticasone furoate (DPI)</td>
</tr>
<tr>
<td>Fluticasone propionate (DPI)</td>
</tr>
<tr>
<td>Fluticasone propionate (pMDI, standard particle, HFA)</td>
</tr>
<tr>
<td>Mometasone furoate (pMDI, standard particle, HFA)</td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11). ICS by pMDI should preferably be used with a spacer.

For new preparations, including generic ICS, the manufacturer’s information should be reviewed carefully, as products containing the same molecule may not be clinically equivalent. Combination inhalers that include a long-acting muscarinic antagonist (LAMA) may have different ICS dosing – see product information.
WHY SHOULD ICS-CONTAINING MEDICATION BE COMMENCED FROM THE TIME OF DIAGNOSIS?

For the best outcomes, ICS-containing treatment should be initiated when (or as soon as possible after) the diagnosis of asthma is made. All patients should also be provided with a reliever inhaler for quick symptom relief, preferably an anti-inflammatory reliever (AIR).

GINA recommends ICS-containing medication from diagnosis for several reasons:

- As-needed low-dose ICS-formoterol reduces the risk of severe exacerbations and emergency department visits or hospitalizations by 65% compared with SABA-only treatment.\(^{183}\) This anti-inflammatory reliever regimen (AIR-only) significantly reduces severe exacerbations regardless of the patient’s baseline symptom frequency, lung function, exacerbation history or inflammatory profile: type 2-high or Type 2-low.\(^{188}\)
- Starting treatment with SABA alone trains patients to regard it as their main asthma treatment, and increases the risk of poor adherence when daily ICS is subsequently prescribed.
- Early initiation of low-dose ICS in patients with asthma leads to a greater improvement in lung function than if symptoms have been present for more than 2–4 years.\(^{297,298}\) One study showed that after this time, higher ICS doses were required, and lower lung function was achieved.\(^{298}\)
- Patients not taking ICS who experience a severe exacerbation have a greater long-term decline in lung function than those who are taking ICS.\(^{117}\)
- For patients with occupational asthma, early removal from exposure to the sensitizing agent and early ICS-containing treatment increase the probability of resolution of symptoms, and improvement of lung function and airway hyperresponsiveness.\(^{62,63}\)

For adults and adolescents, recommended options for initial asthma treatment, based on evidence (where available) and consensus, are listed in Box 4-4 (p.75) and shown in Box 4-5 (p.76). Treatment for adults and adolescents is shown in two tracks, depending on the reliever inhaler (Box 4-6, p.77).

For children 6–11 years, recommendations about initial treatment are shown in Box 4-10 (p.94) and Box 4-11 (p.95).

The patient’s response should be reviewed, and treatment stepped down once good control is achieved. Recommendations for a stepwise approach to ongoing treatment are found in Box 4-12 (p.96).

Does FeNO help in deciding whether to commence ICS?

In studies mainly limited to non-smoking adult patients, fractional concentration of exhaled nitric oxide (FeNO) >50 parts per billion (ppb) was associated with a good short-term (weeks) response to ICS.\(^{299-300}\) However, these studies did not examine the longer-term risk of exacerbations, and the relationship between FeNO and other Type 2 biomarkers is lost in obese patients.\(^{35,48}\) In two 12-month studies in patients with mild asthma or taking SABA alone, severe exacerbations were reduced with as-needed low-dose ICS-formoterol versus as-needed SABA and versus maintenance ICS, independent of baseline inflammatory characteristics including FeNO.\(^{187,188}\)

Consequently, in patients with a diagnosis or suspected diagnosis of asthma, high FeNO can support the decision to start ICS, but low FeNO cannot be used to decide against treatment with ICS. Based on past and current evidence, GINA recommends treatment with daily low-dose ICS or as-needed low-dose ICS-formoterol for all adults and adolescents with mild asthma, to reduce the risk of serious exacerbations.\(^{6,187,188,301-302}\)

Choice of medication, device and dose

In clinical practice, the choice of medication, device and dose for maintenance and for reliever for each individual patient should be based on assessment of symptom control, risk factors, which inhalers are available for the relevant medication class, which of these the patient can use correctly after training, their cost, their environmental impact and the patient’s likely adherence. For more detail about choice of inhaler, see Section 5 (p.108) and Box 5-1 (p.109). It is important to monitor the response to treatment and any side-effects, and to adjust the dose accordingly (Box 4-6, p.77). There is currently insufficient good-quality evidence to support use of extrafine-particle ICS aerosols over others.\(^{303}\)
Once good symptom control has been maintained for 2–3 months, and if the patient has not had any exacerbations, asthma treatment can be carefully down-titrated to the minimum medications and dose that will maintain good symptom control and minimize exacerbation risk, while reducing the potential for side-effects (Box 4-6, p.77). For patients with severe asthma who have had a good asthma response to biologic therapy, a longer period of stability is recommended before the ICS dose is reduced, and reduction and cessation of OCS should be undertaken first. More details are given in Section 8, p.139. Patients who are being considered for a high daily dose of ICS (except for short periods) should be referred for expert assessment and advice, where possible (Section 8, p.139).

GINA recommends that all adults and adolescents and all children 6–11 years should receive ICS-containing medication, incorporated in their maintenance and/or anti-inflammatory reliever treatment as part of personalized asthma management. For adults and adolescents, treatment options are shown in Box 4-6 (p.77) and, for children aged 6–11 years, in Box 4-12 (p.96). Clinicians should check local eligibility and payer criteria before prescribing.

Adjusting ongoing asthma treatment in adults, adolescents, and children aged 6–11 years

Once asthma treatment has begun (Box 4-4, Box 4-5, Box 4-10 and Box 4-11, p.75), ongoing treatment decisions are based on a personalized cycle of assessment, adjustment of treatment, and review of the response. For each patient, in addition to treatment of modifiable risk factors, asthma medication can be adjusted up or down in a stepwise approach (adults and adolescents: Box 4-6, p.77, children 6–11 years, Box 4-12, p.96) to achieve good symptom control and minimize future risk of exacerbations, persistent airflow limitation and medication side-effects. When good asthma control has been maintained for 2–3 months, treatment may be stepped down to find the patient’s minimum effective treatment (Box 4-13, p.102).

People’s ethnic and racial backgrounds may be associated with different responses to treatment. These are not necessarily associated with genetic differences. The contributors are likely to be multifactorial, including differences in exposures, social disadvantage, diet and health-seeking behavior.

If a patient has persisting uncontrolled symptoms and/or exacerbations despite 2–3 months of ICS-containing treatment, assess and correct the following common problems before considering any step up in treatment:

- Incorrect inhaler technique
- Poor adherence
- Persistent exposure at home/work to agents such as allergens, tobacco smoke, indoor or outdoor air pollution, or to medications such as beta-blockers or (in some patients) nonsteroidal anti-inflammatory drugs (NSAIDs)
- Comorbidities that may contribute to respiratory symptoms and poor quality of life
- Incorrect diagnosis.

The evidence supporting treatment options at each step is summarized below, first for adults and adolescents, then for children 6–11 years.
ADULTS AND ADOLESCENTS: ASTHMA TREATMENT TRACKS

The steps below refer to the recommended asthma treatment options shown in Box 4-6 (p.77). Treatment recommendations for adults and adolescents are shown in two treatment Tracks (Box 4-3), for clarity. Suggested low, medium and high doses for a range of ICS formulations are shown in Box 4-2 (p.71). Medication options and doses for GINA Track 1 are listed in Box 4-8 (p.84). Details about treatment steps for children 6–11 years start on p.94.

Box 4-3. Asthma treatment tracks for adults and adolescents

Asthma treatment for adults and adolescents is in two Tracks

For adults and adolescents, the main treatment figure (Box 4-6, p.77), shows the options for ongoing treatment as two treatment ‘tracks’. The key difference is the medication that is used for symptom relief. In Track 1 (preferred), the reliever is as needed low-dose ICS formoterol, and in Track 2, as-needed SABA or as-needed ICS-SABA.

The reasons for showing treatment in two tracks are:

- to show clinicians how treatment can be stepped up and down using the same reliever at each step
- because ICS-formoterol cannot be used as the reliever in patients prescribed a combination ICS with non-formoterol LABA, due to lack of evidence about efficacy and safety (p.69)\(^\text{14}\).

Track 1: The reliever is as-needed low-dose ICS-formoterol

This is the preferred approach recommended by GINA for adults and adolescents, because using low-dose ICS formoterol (an anti-inflammatory reliever; AIR) reduces the risk of severe exacerbations compared with regimens that use SABA as reliever, with similar symptom control. In addition, the treatment regimen is simpler, with patients using a single medication for reliever and for maintenance treatment if prescribed, across treatment steps.

- With this approach, when a patient at any treatment step has asthma symptoms, they use low-dose ICS-formoterol in a single inhaler for symptom relief. In Steps 1–2, this provides their anti-inflammatory therapy.
- In Steps 3–5, patients also take ICS formoterol as their daily maintenance treatment; together, this is called ‘maintenance-and-reliever therapy’ (MART).
- Medications and doses for GINA Track 1 are shown in Box 4-8 (p.84).

Track 2: The reliever is as-needed SABA or as-needed ICS-SABA

This is an alternative approach if Track 1 is not possible, or if a patient’s asthma is stable with good adherence and no exacerbations on their current therapy. However, before prescribing a regimen with SABA reliever, consider whether the patient is likely to be adherent with their maintenance therapy, as otherwise they will be at higher risk of exacerbations.

- In Step 1, the patient takes a SABA and a low-dose ICS together for symptom relief when symptoms occur (in a combination inhaler, or with the ICS taken immediately after the SABA).
- In Steps 2–5, a SABA (alone) or combination ICS-SABA is used for symptom relief, and the patient takes maintenance ICS-containing medication regularly every day. If the reliever and maintenance medication are in different devices, make sure that the patient can use each inhaler correctly.
- If changing between steps requires a different inhaler device, train the patient how to use the new inhaler.

Stepping up and down

Treatment can be stepped up or down along one track, using the same reliever at each step, or it can be switched between tracks, according to the individual patient’s needs and preferences. Before stepping up, check for common problems such as incorrect inhaler technique, poor adherence, and environmental exposures, and confirm that the symptoms are due to asthma (Box 2-4, p.47).

Additional controller options

The additional controller options, shown below the two treatment tracks, have either limited indications or less evidence for their safety and/or efficacy, compared with the treatments in Tracks 1 and 2.

See list of abbreviations (p.11).
INITIAL ASTHMA TREATMENT FOR ADULTS AND ADOLESCENTS

Box 4-4. Initial asthma treatment for adults and adolescents with a diagnosis of asthma

These recommendations are based on evidence, where available, and on consensus.

<table>
<thead>
<tr>
<th>Presenting symptoms</th>
<th>Preferred INITIAL treatment</th>
<th>Alternative INITIAL treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrequent asthma symptoms, e.g., 1–2 days/week or less</td>
<td>As-needed low-dose ICS-formoterol (Evidence A)</td>
<td>Low-dose ICS taken whenever SABA is taken, in combination or separate inhalers (Evidence B). Such patients are highly unlikely to be adherent with daily ICS.</td>
</tr>
<tr>
<td>Asthma symptoms less than 3–5 days/week, with normal or mildly reduced lung function</td>
<td></td>
<td>Low-dose ICS plus as-needed SABA (Evidence A). Before choosing this option, consider likely adherence with daily ICS.</td>
</tr>
<tr>
<td>Asthma symptoms most days (e.g., 4–5 days/week or more); or waking due to asthma once a week or more, or low lung function. See p.80 for additional considerations for starting at Step 3.</td>
<td>Low-dose ICS-formoterol maintenance-and-reliever therapy (MART) (Evidence A)</td>
<td>Low-dose ICS-LABA plus as-needed SABA (Evidence A) or plus as-needed ICS-SABA (Evidence B), OR Medium-dose ICS plus as-needed SABA (Evidence A) or plus as-needed ICS-SABA (Evidence B). Consider likely adherence with daily maintenance treatment.</td>
</tr>
<tr>
<td>Daily asthma symptoms, waking at night with asthma once a week or more, with low lung function</td>
<td>Medium-dose ICS-formoterol maintenance-and-reliever therapy (MART) (Evidence D).</td>
<td>Medium- or high-dose ICS-LABA (Evidence D) plus as-needed SABA or plus as-needed ICS-SABA. Consider likely adherence with daily maintenance treatment. High-dose ICS plus as-needed SABA is another option (Evidence A) but adherence is worse than with combination ICS-LABA.</td>
</tr>
<tr>
<td>Initial asthma presentation is during an acute exacerbation</td>
<td>Treat as for exacerbation (Box 9-4, p.167 and Box 9-6, p.171), including short course of OCS if severe; commence medium-dose MART (Evidence D).</td>
<td>Treat as for exacerbation (Box 9-4, p.167 and Box 9-6, p.171), including short course of OCS if severe; commence medium- or high-dose ICS-LABA plus as-needed SABA (Evidence D).</td>
</tr>
</tbody>
</table>

Before starting initial controller treatment

- Record evidence for the diagnosis of asthma.
- Record the patient’s level of symptom control and risk factors, including lung function (Box 2-2, p.37).
- Consider factors influencing choice between available treatment options (Box 3-4, p.54), including likely adherence with daily ICS-containing treatment, particularly if the reliever is SABA.
- Choose a suitable inhaler (Box 5-1, p.109) and ensure that the patient can use the inhaler correctly.
- Schedule an appointment for a follow-up visit.

After starting initial controller treatment

- Review patient’s response (Box 2-2, p.37) after 2–3 months, or earlier depending on clinical urgency.
- See Box 4-6 (p.77) for recommendations for ongoing treatment and other key management issues.
- Check adherence and inhaler technique frequently.
- Step down treatment once good control has been maintained for 3 months (Box 4-13, p.102).

Also consider cost and likely adherence with maintenance treatment. See Box 4-2 (p.71) for low, medium and high ICS doses, and Box 4-8 (p.84) for Track 1 medications and doses. See list of abbreviations (p.11).
Box 4-5. Flowchart for selecting initial treatment in adults and adolescents with a diagnosis of asthma

These recommendations are based on evidence, where available, and on consensus. See list of abbreviations (p.11). See Box 4-2 (p.71) for low, medium and high ICS doses for adults and adolescents. See Box 4-6 (p.77), for Track 1 medications and doses.
ASTHMA TREATMENT STEPS IN ADULTS AND ADOLESCENTS

Box 4-6. Personalized management for adults and adolescents to control symptoms and minimize future risk

GINA 2024 – Adults & adolescents 12+ years
Personalized asthma management
Assess, Adjust, Review
for individual patient needs

TRACK 1: PREFERRED CONTROLLER and RELIEVER
Using ICS-formoterol as the reliever reduces the risk of exacerbations compared with using a SABA reliever, and is a simpler regimen

STEPS 1 – 2
As-needed low dose ICS-formoterol

RELIEVER: As-needed low-dose ICS-formoterol*

STEPS 3
Low dose maintenance ICS-formoterol

STEPS 4
Medium dose maintenance ICS-formoterol

STEPS 5
Add-on LAMA
Refer for assessment of phenotype. Consider high dose maintenance ICS-formoterol, ± anti-IgE, anti-IL5/5R, anti-IL4Rα, anti-TSLP

*Anti-inflammatory reliever. †If prescribing LTRA, advise patient/caregiver about risk of neuropsychiatric adverse effects. See list of abbreviations (p.11).

For recommendations about initial asthma treatment in adults and adolescents, see Box 4-4 (p.75) and Box 4-5 (p.76). See Box 4-2 (p.71) for low, medium and high ICS doses for adults and adolescents. See Box 4-8 (p.84) for Track 1 medications and doses.
Track 1 is the preferred approach recommended by GINA for adults and adolescents with asthma, because using low-dose ICS formoterol (an anti-inflammatory reliever; AIR) reduces the risk of severe exacerbations compared with regimens that use SABA as reliever, with similar symptom control and lung function. In addition, the treatment regimen is simpler, with patients using a single medication for reliever and for maintenance treatment (if prescribed), across treatment steps.

With the AIR approach, when a patient at any treatment step has asthma symptoms, they use low-dose ICS-formoterol in a single inhaler for symptom relief. In Steps 1–2, this provides their anti-inflammatory therapy. In Steps 3–5, patients also take ICS formoterol as their daily maintenance treatment; together, this is called ‘maintenance-and-reliever therapy’ (MART). Details about medications and doses for Track 1 are in Box 4-8, p.84.

Details below are for Track 1, Steps 1–4. In Step 5, treatment options for Tracks 1 and 2 are similar, so the information is shown for both Tracks together, starting on p.91 and in Section 8, p.139.

Box 4-7. Track 1 (preferred) treatment Steps 1–4 for adults and adolescents

See Box 4-8 (p.84) for details of medications and doses. AIR: anti-inflammatory reliever; ICS: inhaled corticosteroid; MART: maintenance-and-reliever therapy with ICS-formoterol; SABA: short-acting beta2 agonist

Track 1 (preferred) Step 1–2 treatment for adults and adolescents: as-needed low-dose combination ICS-formoterol

In Track 1, Steps 1–2, low-dose combination ICS-formoterol is used as needed for symptom relief, and before exercise or before expected allergen exposure.

Information about Steps 1 and 2 below is combined, because the recommended treatment (as-needed low-dose ICS-formoterol) is the same.

In Track 1, Step 1–2 treatment with as-needed-only low-dose combination ICS-formoterol is recommended for:

- Step-down treatment for patients whose asthma is well controlled on low-dose maintenance-and-reliever therapy with ICS-formoterol (Evidence D) or on regular low-dose ICS with as-needed SABA (Evidence A)

- Initial asthma treatment for patients previously using SABA alone (or with newly diagnosed asthma), with normal or mildly reduced lung function. Some clinical factors, outlined below, may prompt consideration of starting treatment instead at Step 3, with low-dose ICS-formoterol maintenance-and-reliever therapy.
Populations studied

The populations studied in the large randomized controlled trials of as-needed low-dose ICS-formoterol187,188,301,302 included almost 10,000 adults and adolescents with asthma that was considered to be mild, and was either uncontrolled on SABA alone, or controlled on low-dose ICS or LTRA. In the two largest studies, post-bronchodilator FEV\textsubscript{1} was required to be $\geq 80\%$ predicted at baseline, 301,302

Evidence

Use of low-dose ICS-formoterol as needed for symptom relief (an anti-inflammatory reliever) for adults and adolescents (Evidence B) is supported by evidence from four randomized controlled trials, and by systematic review and meta-analysis of all four studies for several outcomes.183 The two largest studies were double-blind, and two were pragmatic and open-label, intended to evaluate the treatment as it would be used in clinical practice, without patients required to take a twice-daily maintenance inhaler.

The key findings with as-needed low-dose ICS-formoterol, as follows, support the Step 1–2 recommendations:

- A large double-blind study found a 64\% reduction in severe exacerbations requiring OCS, compared with SABA-only treatment,301 with a similar finding in an open-label study in patients previously taking SABA alone (Evidence A).187 In the Cochrane meta-analysis, as-needed low-dose ICS-formoterol reduced the risk of severe exacerbations requiring OCS by 55\%, and reduced the risk of emergency department visits or hospitalizations by 65\%, compared with SABA alone (Evidence A).183

- Two large double-blind studies showed as-needed budesonide-formoterol was non-inferior for severe exacerbations, compared with regular ICS.301,302 In two open-label randomized controlled trials, representing the way that patients with mild asthma would use as-needed ICS-formoterol in real life, as-needed budesonide-formoterol was superior to maintenance ICS in reducing the risk of severe exacerbations (Evidence A).187,188

- A Cochrane review provided moderate to high certainty evidence that as-needed ICS-formoterol was clinically effective in adults and adolescents with mild asthma, significantly reducing important clinical outcomes including need for oral corticosteroids, severe exacerbation rates, and emergency department visits or hospitalizations compared with daily ICS plus as-needed SABA (Evidence A).183

- In all four studies, the as-needed low-dose ICS-formoterol strategy was associated with a substantially lower average ICS dose than with maintenance low-dose ICS.187,188,301,302

- Clinical outcomes with as-needed ICS-formoterol were similar in adolescents as in adults.305

- A post hoc analysis of one study301 found that a day with >2 doses of as-needed budesonide-formoterol reduced the short-term (21 day) risk of severe exacerbations compared to as needed terbutaline alone, suggesting that timing of use of ICS-formoterol is important.728

- No new safety signals were seen with as-needed budesonide-formoterol in these studies.187,188,301,302,306

Considerations for recommending as-needed-only low-dose ICS-formoterol as preferred treatment for Steps 1–2

The most important considerations for GINA were:

- The need to prevent severe exacerbations in patients with mild or infrequent symptoms; these can occur with unpredictable triggers such as viral infection, allergen exposure, pollution or stress.

- The desire to avoid the need for daily ICS in patients with mild asthma, who in clinical practice are often poorly adherent with prescribed ICS, leaving them exposed to the risks of SABA-only treatment.307

- The greater reduction in severe exacerbations with as-needed ICS-formoterol, compared with daily ICS, among patients previously taking SABA alone, with no significant difference for patients with well-controlled asthma on ICS or LTRA at baseline.187,308
The very small differences in FEV₁, (approximately 30–50 mL), symptom control (difference in ACQ-5 of approximately 0.15 versus minimal clinically important difference 0.5), and symptom-free days (mean difference 10.6 days per year) compared with regular ICS were considered to be less important. These differences did not increase over the 12-month studies. The primary outcome variable of one study was 'well-controlled asthma weeks', but this outcome was not considered reliable because it was based on an older concept of asthma control, and was systematically biased against the as-needed ICS-formoterol treatment group because much less ICS was permitted in a week for patients on ICS-formoterol than those on maintenance ICS before the week was classified as not well controlled.

The similar reduction in FeNO with as-needed budesonide-formoterol as with maintenance ICS, and the lack of significant difference in treatment effect with as-needed budesonide-formoterol by patients’ baseline eosinophils or baseline FeNO.

Considerations for the GINA recommendation against SABA-only treatment of asthma

There were several important considerations for extending the recommendation for as-needed-only low-dose ICS-formoterol to adults and adolescents with infrequent asthma symptoms (i.e., eliminating SABA-only treatment):

- Patients with few interval asthma symptoms can still have severe or fatal exacerbations. GINA recommends assessing and addressing risk factors for exacerbations as well as symptom control (Box 2-2, p.37).
- The historic distinction between so-called ‘intermittent’ and ‘mild persistent’ asthma is arbitrary, with no evidence of difference in response to ICS. A large reduction in risk of severe exacerbations with as-needed ICS-formoterol, compared with as-needed SABA, was seen even in patients with SABA use twice a week or less at baseline.
- A post hoc analysis of one study found that a single day with increased as-needed budesonide-formoterol reduced the short-term (21-day) risk of severe exacerbations compared to as needed SABA alone, suggesting that timing of use of ICS-formoterol is important.
- In patients with infrequent symptoms, adherence with prescribed daily ICS is very poor, exposing them to risks of SABA-only treatment if they are prescribed daily ICS plus as-needed SABA.
- There is a lack of evidence for the safety or efficacy of SABA-only treatment. Historic recommendations for SABA-only treatment were based on the assumption that patients with mild asthma would not benefit from ICS.
- Taking SABA regularly for as little as one week significantly increases exercise-induced bronchoconstriction, airway hyperresponsiveness and airway inflammation, and decreases bronchodilator response.
- Even modest over-use of SABA (indicated by dispensing of 3 or more 200-dose canisters a year) is associated with increased risk of severe exacerbations and, in one study, asthma mortality.
- GINA places a high priority on avoiding patients becoming reliant on SABA, and on avoiding conflicting messages in asthma education. Previously, patients were initially provided only with SABA for symptom relief, but later, despite this treatment being effective from the patient’s perspective, they were told that to reduce their SABA use, they needed to take a daily maintenance treatment, even when they had no symptoms. Recommending that all patients should be provided with ICS-containing treatment (including, in mild asthma, the option of as-needed ICS-formoterol) from the start of therapy allows consistent messaging about the need for both symptom relief and risk reduction, and may avoid establishing patient reliance on SABA as their main asthma treatment.

Considerations for starting treatment with low-dose maintenance-and-reliever therapy (Step 3 MART) instead of as-needed-only ICS-formoterol (Steps 1–2)

There is no specific evidence to guide this decision, but by consensus, we suggest starting with Step 3 MART (if permitted by local regulators) if the patient has symptoms most days or is waking at night due to asthma more than once a week (to rapidly reduce symptom burden), or if they are currently smoking, have impaired perception of bronchoconstriction (e.g. low initial lung function but few symptoms), a recent severe exacerbation or a history of a life-threatening asthma exacerbation, have severe airway hyperresponsiveness, or are currently exposed to a seasonal allergic trigger.
Anti-inflammatory reliever treatment with as-needed-only ICS-formoterol (‘AIR-only’) is the preferred treatment for Steps 1 and 2 in adults/adolescents, so these steps have been combined in the treatment figure (Track 1, Box 4-6, p.77) to avoid confusion.

Practice points for as-needed-only ICS-formoterol in mild asthma

The usual dose of as-needed budesonide-formoterol in mild asthma is a single inhalation of 200/6 mcg (delivered dose 160/4.5 mcg), taken whenever needed for symptom relief. The maximum recommended dose of as-needed budesonide-formoterol in a single day corresponds to a total of 72 mcg formoterol (54 mcg delivered dose). However, in randomized controlled trials (RCTs) in mild asthma, such high usage was rarely seen, with average use around 3–4 doses per week.187,301,302 For more details about medications and doses for as-needed-only ICS-formoterol, see Box 4-8 (p.84).

Rinsing the mouth is not generally needed after as-needed doses of low-dose ICS-formoterol, as this was not required in any of the mild asthma studies (or in MART studies), and there was no increase in risk of oral candidiasis.306

Other ICS-formoterol formulations have not been studied for as-needed-only use, but beclometasone-formoterol may also be suitable, as it is well-established for as-needed use within maintenance-and-reliever therapy in GINA Steps 3–5.224 Combinations of ICS with non-formoterol LABA cannot be used as-needed for symptom relief.

For **pre-exercise use** in patients with mild asthma, one 6-week study showed that use of low-dose budesonide-formoterol for symptom relief and before exercise reduced exercise-induced bronchoconstriction to a similar extent as regular daily low-dose ICS with SABA for symptom relief and before exercise.236 This suggests that patients with mild asthma who are prescribed as-needed low-dose ICS-formoterol to prevent exacerbations and control symptoms can use the same medication before exercising, if needed, and do not need to be prescribed a SABA for pre-exercise use (Evidence B).

Patient preferences: from qualitative research, the majority of patients in a pragmatic open-label study preferred as-needed ICS-formoterol for ongoing treatment rather than regular daily ICS with a SABA reliever. They reported that shared decision-making would be important in choosing between these treatment options.312

Asthma action plan: Simple action plans for AIR-only and MART are available online.313,314

Track 1 (preferred) Step 3 treatment for adults and adolescents: low-dose ICS-formoterol maintenance-and-reliever therapy (MART)

For adults and adolescents, the preferred Step 3 option is low-dose ICS-formoterol as both maintenance and reliever treatment (MART). In this regimen, low-dose ICS-formoterol, either budesonide-formoterol or beclometasone-formoterol, is used as both the daily maintenance treatment and as an anti-inflammatory reliever for symptom relief. The low-dose ICS-formoterol can also be used before exercise, and before expected allergen exposure.

Before considering a step up, check for common problems such as incorrect inhaler technique, poor adherence, and environmental exposures, and confirm that the symptoms are due to asthma (Box 2-4, p.47).

Populations studied

Double-blind studies included adult and adolescent patients with ≥1 exacerbation in the previous year despite maintenance low-dose ICS or ICS-LABA treatment, with poor symptom control. Open-label studies were in patients taking at least low-dose ICS or ICS-LABA, with suboptimal asthma control; they did not require a history of exacerbations.226

Evidence

Low-dose ICS-formoterol maintenance-and-reliever therapy reduced severe exacerbations and provided similar levels of asthma control at relatively low doses of ICS, compared with a fixed dose of ICS-LABA as maintenance treatment or a higher dose of ICS, both with as-needed SABA (Evidence A).226,315-319 In a meta-analysis, switching patients with uncontrolled asthma from Step 3 treatment plus SABA reliever to MART was associated with a 29% reduced risk of severe exacerbation, compared with stepping up to Step 4 ICS-LABA maintenance plus SABA reliever, and a 30% reduced risk compared with staying on the same treatment with SABA reliever.320 In open-label studies that did not require a history of
severe exacerbations, maintenance-and-reliever therapy with ICS-formoterol also significantly reduced severe exacerbations, with a lower average dose of ICS.226,321

The benefit of the MART regimen in reducing the risk of severe exacerbations requiring OCS appears to be due to the increase in doses of both the ICS and the formoterol at a very early stage of worsening asthma. As for patients using as-needed-only ICS-formoterol (p.79), this reduces the risk of progressing to a severe exacerbation in the next 3 weeks.126-128

Other considerations

Use of ICS-formoterol as an anti-inflammatory reliever across treatment steps provides a simple regimen with easy transition if treatment needs to be stepped up (e.g., from Step 1–2 to Step 3, or Step 3 to Step 4), without the need for an additional medication or different prescription, or a different inhaler type (see Box 4-8, p.84).

Practice points for maintenance-and-reliever therapy (MART) with low-dose ICS-formoterol

Medications: ICS-formoterol maintenance-and-reliever therapy for Step 3 treatment can be prescribed with low-dose budesonide-formoterol (≥12 years) or low-dose beclometasone-formoterol (≥18 years). The usual dose for MART with budesonide-formoterol is 200/6 mcg metered dose (160/4.5 mcg delivered dose) and the usual dose for MART with beclometasone-formoterol is 100/6 metered dose (delivered dose 84.6/5 mcg for pMDI and 81.9/5 mcg for DPI). Each of these combinations is prescribed as one inhalation twice-daily plus one inhalation whenever needed for symptom relief.

Doses: For MART with budesonide-formoterol, the maximum recommended total dose of formoterol in a single day (total of maintenance-and-reliever doses) gives 72 mcg metered dose (54 mcg delivered dose) of formoterol, with extensive evidence from large studies for its safety and efficacy up to this dose in a single day.224-226 With or without ICS,306,322,323 Based on this evidence, GINA suggests that the same maximum total dose of formoterol in a single day should also apply for MART with beclometasone-formoterol (maximum total 12 inhalations, total metered dose 72 mcg). Most patients need far fewer doses than this. For a summary of medications and doses, see Box 4-8 (p.84).

ICS-formoterol should not be used as the reliever for patients taking a different ICS-LABA maintenance treatment, since clinical evidence for safety and efficacy is lacking. Use of ICS-formoterol with other LABAs may be associated with increased adverse effects.14

Rinsing the mouth is not generally needed after as-needed doses of ICS-formoterol, as this was not required in any of the MART studies, and there was no increase in risk of oral candidiasis.

Additional practice points can be found in an article describing how to use MART, including a customizable written asthma action plan for use with this regimen.313 Other action plans for MART are available online.313,314

Track 1 (preferred) Step 4 treatment for adults and adolescents: medium-dose ICS-formoterol maintenance-and-reliever therapy (MART)

At a population level, most benefit from ICS is obtained at low dose, but individual ICS responsiveness varies, and some patients whose asthma is uncontrolled on low-dose ICS-LABA despite good adherence and correct inhaler technique may benefit from increasing the maintenance dose to medium, usually by taking twice the number of inhalations (see Box 4-8, p.84). High-dose ICS-formoterol is not recommended in Track 1 Step 4.

Before stepping up, check for common problems such as incorrect inhaler technique, poor adherence, and environmental exposures, and confirm that the symptoms are due to asthma (Box 2-4, p.47).

Patients prescribed MART use low-dose ICS-formoterol as needed for symptom relief, and before exercise or allergen exposure if needed.

For adult and adolescent patients, combination ICS-formoterol as both maintenance-and-reliever treatment (MART) is more effective in reducing exacerbations than the same dose of maintenance ICS-LABA or higher doses of ICS318 or ICS-LABA224 (Evidence A). The greatest reduction in risk was seen in patients with a history of severe exacerbations,224 but MART was also significantly more effective than conventional best practice with as-needed SABA in open-label studies in which patients were not selected for greater exacerbation risk.228
In Step 4, the MART regimen can be prescribed with medium-dose maintenance budesonide-formoterol or beclometasone-formoterol treatment, by increasing the maintenance dose of low-dose ICS-formoterol to 2 inhalations twice-daily. The reliever remains 1 inhalation of low-dose ICS-formoterol as needed.

The usual dose for MART with budesonide-formoterol is 200/6 mcg metered dose (160/4.5 mcg delivered dose) and the usual dose for MART with beclometasone-formoterol is 100/6 mcg metered dose (delivered dose 84.6/5 mcg for pMDI and 81.9/5 mcg for DPI). For Step 4, each of these combinations is prescribed as two inhalations twice-daily plus one inhalation whenever needed for symptom relief.

As in Step 3, the maximum recommended total dose of budesonide-formoterol in a single day (total of maintenance-and-reliever doses) gives 72 mcg metered dose (54 mcg delivered dose) of formoterol, with extensive evidence from large studies for its safety306,322,323 and efficacy224,226 up to this dose in a single day. Based on this evidence, GINA suggests that the same maximum total dose of formoterol in a single day should also apply for MART with beclometasone-formoterol (maximum total 12 inhalations, total metered dose 72 mcg). Most patients need far fewer doses than this.

For practice points, see information for GINA Step 3 and an article for clinicians.313 For a summary of medications and doses, see Box 4-8 (p.84).
Box 4-8. Medications and doses for GINA Track 1: anti-inflammatory reliever (AIR) therapy

<table>
<thead>
<tr>
<th>GINA Track 1 – general principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>In GINA Track 1, the reliever inhaler is low-dose ICS-formoterol, with or without maintenance ICS-formoterol. This is the preferred treatment approach for adults and adolescents with asthma, because it reduces severe exacerbations across treatment steps compared with using a SABA reliever; it uses a single medication for both reliever and maintenance treatment (less confusing for patients); and the patient’s treatment can be stepped up and down if needed without changing the medication or inhaler device. This cannot be done with any other ICS-LABA. ICS-formoterol can also be used before exercise and before allergen exposure.</td>
</tr>
<tr>
<td>Low-dose ICS-formoterol is called an anti-inflammatory reliever (AIR) because it relieves symptoms and reduces inflammation. AIR with ICS-formoterol significantly reduces the risk of severe exacerbations across treatment steps compared with using a SABA reliever, with similar symptom control, lung function and adverse effects.</td>
</tr>
<tr>
<td>Steps 1–2 (AIR-only): low-dose ICS-formoterol is used as needed for symptom relief without any maintenance treatment. It reduces the risk of severe exacerbations and ED visits/hospitalizations by 65% compared with SABA alone, and reduces ED visits/hospitalizations by 37%, compared with daily ICS plus as-needed SABA.183 Starting treatment with as-needed ICS-formoterol avoids training patients to regard SABA as their main asthma treatment.</td>
</tr>
<tr>
<td>Steps 3–5 (MART): maintenance-and-reliever therapy with ICS-formoterol reduces the risk of severe exacerbations by 32% compared with the same dose of ICS-LABA,224 by 23% compared with a higher dose of ICS-LABA,224 and by 17% compared with usual care.226 MART is also an option for children 6–11 years in Steps 3–4.</td>
</tr>
<tr>
<td>Asthma action plan: Simple action plans for AIR-only and MART are available online.313,314</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Which medications can be used in GINA Track 1, and how often?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most evidence for MART, and all evidence for AIR-only, is with budesonide-formoterol DPI, usually 200/6 mcg metered dose (160/4.5 mcg delivered dose) for adults/adolescents, and 100/6 mcg (80/4.5 mcg delivered dose) for MART in children 6–11 years. Beclometasone dipropionate (BDP)-formoterol 100/6 mcg (84.6/5.0) is also effective for MART in adults. Other low-dose combination ICS-formoterol products may be suitable but have not been studied.</td>
</tr>
<tr>
<td>For as-needed use, patients should take either 1 or 2 inhalations (based on the formulation; see below and next page) whenever needed for symptom relief, or before exercise or allergen exposure, instead of a SABA reliever.</td>
</tr>
<tr>
<td>Patients do not need to wait a certain number of hours before taking more reliever doses (unlike SABA), but in a single day, they should not take more than the maximum total number of inhalations shown below and over (total as-needed plus maintenance doses, if used). Most patients need far less than this.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>Inhalers: mcg/inhalation metered dose [delivered dose] and maximum in any day</th>
<th>Dosing frequency by age group and treatment step (see next page for additional inhaler options and doses)</th>
</tr>
</thead>
</table>
| 6–11 years | Budesonide-formoterol 100/6 DPI [80/4.5] (maximum total 8 inhalations in any day) | **Step 1–2 AIR-only:** no evidence to date
Step 3 MART: 1 inhalation once daily plus 1 as needed
Step 4 MART: 1 inhalation twice daily plus 1 as needed
Step 5 MART: not recommended |
| 12–17 years | Budesonide-formoterol 200/6 DPI [160/4.5] mcg DPI or pMDI (maximum total 12 inhalations in any day) | **Step 1–2 (AIR-only):** 1 inhalation as needed
Step 3 MART: 1 inhalation twice (or once) daily plus 1 as needed
Step 4 MART: 2 inhalations twice daily plus 1 as needed
Step 5 MART: 2 inhalations twice daily plus 1 as needed |
| ≥18 years | Budesonide-formoterol 200/6 [160/4.5] or BDP-formoterol 100/6 mcg, pMDI or DPI (maximum total 12 inhalations in any day†) | **Step 1–2 (AIR-only):** 1 inhalation as needed†
Step 3 MART: 1 inhalation twice (or once) daily plus 1 as needed
Step 4 MART: 2 inhalations twice daily plus 1 as needed
Step 5 MART: 2 inhalations twice daily plus 1 as needed |

†For beclometasone (BDP)-formoterol, GINA suggests that the maximum total dose in any day should be 12 inhalations, based on extensive safety data with budesonide-formoterol; it has not been studied as-needed only but may be suitable (see p.82. The delivered dose for BDP-formoterol 100/6 mcg is 84.6/5 mcg for pMDI and 81.9/5 mcg for DPI. See next page for more inhaler doses.)
<table>
<thead>
<tr>
<th>Medications: mcg/inhalation metered dose [delivered dose] (maximum total inhalations in any day*)</th>
<th>Dosing frequency for ICS-formoterol formulations suitable for AIR therapy, by age group and treatment step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children 6–11 years</td>
<td></td>
</tr>
</tbody>
</table>
| Budesonide-formoterol DPI 100/6 [80/4.5] (maximum total 8 inhalations in any day*) | Step 1–2 AIR-only: no evidence to date
Step 3 MART: 1 inhalation once daily plus 1 as needed
Step 4 MART: 1 inhalation twice daily plus 1 as needed
Step 5 MART: not recommended |
| Budesonide-formoterol pMDI 50/3 [40/2.25] (maximum total 16 inhalations in any day*) | These doses ONLY for pMDIs with 3 [2.25] mcg formoterol
Step 1–2 AIR-only: no evidence to date
Step 3 MART: 2 inhalations once daily plus 2 as needed
Step 4 MART: 2 inhalations twice daily plus 2 as needed
Step 5 MART: not recommended |
| **Adolescents 12–17 years** | |
| Budesonide-formoterol DPI or pMDI 200/6 [160/4.5] (maximum total 12 inhalations in any day*) | Step 1–2 (AIR-only): 1 inhalation as needed
Step 3 MART: 1 inhalation twice (or once) daily plus 1 as needed
Step 4 MART: 2 inhalations twice daily plus 1 as needed
Step 5 MART: 2 inhalations twice daily plus 1 as needed |
| Budesonide-formoterol pMDI 100/3 [80/2.25] (maximum total 24 inhalations in any day*) | These doses ONLY for pMDIs with 3 [2.25] mcg formoterol
Step 1–2 (AIR-only): 2 inhalations as needed
Step 3 MART: 2 inhalations twice (or once) daily plus 2 as needed
Step 4 MART: 4 inhalations twice daily plus 2 as needed
Step 5 MART: 4 inhalations twice daily plus 2 as needed |
| **Adults 18 years and older** | |
| Budesonide-formoterol DPI or pMDI 200/6 [160/4.5] (maximum total 12 inhalations in any day*) | Step 1–2 (AIR-only): 1 inhalation as needed
Step 3 MART: 1 inhalation twice (or once) daily plus 1 as needed
Step 4 MART: 2 inhalations twice daily plus 1 as needed
Step 5 MART: 2 inhalations twice daily plus 1 as needed |
| Budesonide-formoterol pMDI 100/3 [80/2.25] (maximum total 24 inhalations in any day*) | These doses ONLY for pMDIs with 3 [2.25] mcg formoterol
Step 1–2 (AIR-only): 2 inhalations as needed
Step 3 MART: 2 inhalations twice (or once) daily plus 2 as needed
Step 4 MART: 4 inhalations twice daily plus 2 as needed
Step 5 MART: 4 inhalations twice daily plus 2 as needed |
| Beclometasone-formoterol pMDI or DPI 100/6 (GINA suggests maximum total 12 inhalations in any day**) | Step 1–2 (AIR-only): 1 inhalation as needed
Step 3 MART: 1 inhalation twice (or once) daily plus 1 as needed
Step 4 MART: 2 inhalations twice daily plus 1 as needed
Step 5 MART: 2 inhalations twice daily plus 1 as needed |

For abbreviations, see p.11. *Maximum total inhalations in any day = as-needed doses plus maintenance doses, if used.

†Beclometasone (BDP)-formoterol has not been studied for as-needed-only use (Steps 1–2), but it may be suitable given its efficacy for MART in moderate-severe asthma.316 GINA suggests that the maximum total dose of BDP-formoterol in any day should be 12 inhalations, based on extensive safety data with budesonide-formoterol.322 For more details, see p.82.

#Budesonide-formoterol 400/12 [320/4.5] mcg should not be used as an anti-inflammatory reliever. For adults/adolescents, GINA does not suggest use of budesonide-formoterol 100/6 [80/4.5] as an anti-inflammatory reliever, since most evidence is with budesonide-formoterol 200/6 [160/4.5] mcg.
TRACK 2 (ALTERNATIVE): TREATMENT STEPS 1–4 FOR ADULTS AND ADOLESCENTS USING SABA RELIEVER

This is an alternative approach if Track 1 is not possible, or if a patient’s asthma is stable with good adherence and no exacerbations on their current therapy. However, before prescribing a regimen with SABA reliever, consider whether the patient is likely to be adherent with their maintenance therapy; if not, they will be at higher risk of exacerbations.

Box 4-9. Track 2 (alternative) treatment Steps 1–4 for adults and adolescents

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Low dose maintenance ICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Low dose maintenance ICS-LABA</td>
</tr>
<tr>
<td>Step 3</td>
<td>Medium/high dose maintenance ICS-LABA</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Refer for expert assessment, phenotyping, and add-on treatment for severe asthma</td>
</tr>
</tbody>
</table>

Track 2 (alternative) Step 1 treatment options for adults and adolescents: low-dose ICS taken whenever SABA is taken, using separate inhalers or combination ICS-SABA

Low-dose ICS taken whenever SABA is used (in combination or separate ICS and SABA inhalers) is an option if as-needed ICS-formoterol is not available, and the patient is unlikely to take regular ICS. This regimen avoids SABA-only treatment, and may also be useful in regions where the cost of ICS-formoterol is currently prohibitive.

Populations studied

All the evidence for taking ICS whenever SABA is taken is from studies in patients whose asthma was controlled or partly controlled on daily low-dose ICS, i.e., it has been evaluated as a step-down treatment option.

Evidence

The evidence for taking ICS whenever SABA is taken is from two small studies in adults and two small studies in children and adolescents, with separate or combination ICS and SABA inhalers. These studies showed no difference in exacerbations compared with daily ICS, but in the two studies that included a SABA-only arm, SABA alone was the worst option for treatment failure.

All four studies used beclometasone dipropionate (BDP). One study of as-needed combination ICS-SABA used a moderate dose (250 mcg BDP + 100 mcg albuterol), and the three studies with separate inhalers used 2 inhalations of BDP 50 mcg [40 mcg delivered dose] for each 2 inhalations of 100 mcg albuterol.
Other considerations

In making this recommendation, the most important considerations were reducing the risk of severe exacerbations, and the difficulty of achieving good adherence with regularly prescribed ICS in patients with infrequent symptoms. For definitions of low-dose ICS see Box 4-2 (p.71).

Patients with symptoms less than 1–2 days a week are extremely unlikely to take ICS regularly even if prescribed, leaving them exposed to the risks of SABA-only treatment, so taking ICS whenever SABA is taken is likely to be a better option in such patients.

Practice points

If combination ICS-SABA is not available, the patient needs to carry both ICS and SABA inhalers with them for as-needed use. See Box 4-2 (p.71) for ICS doses. There are no studies with daily maintenance low-dose ICS plus as-needed combination ICS-SABA.

Medications not recommended for adults and adolescents with asthma

SABA-only treatment is not recommended by GINA for adults, adolescents or children 6–11 years with asthma. Although inhaled SABAs are highly effective for the quick relief of asthma symptoms, patients whose asthma is treated with SABA alone (compared with ICS) are at increased risk of asthma-related death (Evidence A) and of urgent asthma-related healthcare (Evidence A), even if they have good symptom control. The risk of severe exacerbations requiring urgent health care is substantially reduced in adults and adolescents by either as-needed ICS-formoterol, or by regular low-dose ICS with as-needed SABA. The risk of asthma exacerbations and mortality increases incrementally with higher SABA use, including in patients treated with SABA alone. One long-term study of regular SABA in patients with newly diagnosed asthma showed worse outcomes and lower lung function than in patients who were treated with daily low-dose ICS from the start. Starting treatment of asthma with SABA alone encourages patients to regard it as their main (and often only) asthma treatment, leading to poor adherence if ICS-containing therapy is prescribed.

Treatment with oral bronchodilators (e.g. salbutamol tablets or syrups; oral theophylline) is not recommended for treatment of asthma in any age group. For additional non-recommended bronchodilators, see p.93.

Track 2 (alternative) Step 2 treatment options for adults and adolescents: low-dose maintenance ICS plus as-needed SABA

Regular daily low-dose ICS with as-needed SABA was standard of care for mild asthma for the past 30 years. Most guidelines recommended its use only for patients with asthma symptoms more than twice a week, based on an assumption that patients with less frequent symptoms did not need, and would not benefit, from ICS.

Population studied

Most studies of daily low-dose ICS have included patients with symptoms between 3–7 days a week.

Evidence

Regular daily low-dose ICS plus as-needed SABA is a long-established treatment for mild asthma. There is a large body of evidence from RCTs and observational studies showing that the risks of severe exacerbations, hospitalizations and mortality are substantially reduced with regular low-dose ICS; symptoms and exercise-induced bronchoconstriction are also reduced (Evidence A). Severe exacerbations are halved with low-dose ICS even in patients with symptoms 0–1 days a week. In a meta-analysis of long-term cohort studies, regular ICS was associated with a very small increase in pre-bronchodilator FEV1% predicted, but there is insufficient evidence that it protects from development of persistent airflow limitation.

Other considerations

Clinicians should be aware that adherence with maintenance ICS in the community is extremely low. They should consider the likelihood that patients with infrequent symptoms who are prescribed daily ICS plus as needed SABA will be poorly
adherent with the ICS, increasing their risk of severe exacerbations. Over-use of SABA, indicated by dispensing of three or more 200-dose canisters of SABA in a year (i.e., average use more than daily), is associated with an increased risk of severe exacerbations and, in one study, with increased mortality, even in patients also taking ICS-containing treatment.

Track 2 (alternative) Step 3 treatment for adults and adolescents: maintenance low-dose ICS-LABA plus as-needed SABA or plus as-needed combination ICS-SABA

Before considering a step up, check for common problems such as incorrect inhaler technique, poor adherence, and environmental exposures, and confirm that the symptoms are due to asthma (Box 2-4, p.47).

Currently approved combination ICS-LABA inhalers for Step 3 maintenance treatment of asthma include low doses of fluticasone propionate-formoterol, fluticasone furoate-vilanterol, fluticasone propionate-salmeterol, beclometasone-formoterol, budesonide-formoterol, mometasone-formoterol, and mometasone-indacaterol (see Box 4-2, p.71). Effectiveness of fluticasone furoate-vilanterol over usual care was demonstrated for asthma symptom control in a large real-world study, but there was no significant difference in risk of exacerbations.

Maintenance ICS-LABA plus as-needed SABA

This is an alternative approach if MART is not possible, or if a patient’s asthma is stable with good adherence and no exacerbations on their current therapy. For patients taking maintenance ICS, changing to maintenance combination ICS-LABA provides additional improvements in symptoms and lung function with a reduced risk of exacerbations compared with the same dose of ICS (Evidence A), but there is only a small reduction in reliever use. In these studies, the reliever was as-needed SABA. However, before prescribing a regimen with SABA reliever, consider whether the patient is likely to be adherent with their ICS-containing treatment, as otherwise they will be at higher risk of exacerbations.

Maintenance ICS-LABA plus as-needed combination ICS-SABA (≥18 years)

Population

In the double-blind MANDALA study, the population relevant to Step 3 recommendations comprised patients with poor asthma control and a history of severe exacerbations who were taking maintenance low-dose ICS-LABA or medium-dose ICS. In this study, patients were randomized to as-needed ICS-SABA or as-needed SABA, and continued to take their usual maintenance treatment.

Evidence

In the sub-population taking Step 3 maintenance treatment, as-needed use of 2 inhalations of budesonide-salbutamol (albuterol) 100/100 mcg metered dose (80/90 mcg delivered dose), taken for symptom relief, increased the time to first severe exacerbation by 41% compared with as-needed salbutamol (hazard ratio 0.59; CI 0.42–0.85). The proportion of patients with a clinically important difference in ACQ-5 was slightly higher with the budesonide-salbutamol reliever. A formulation with a lower ICS dose did not significantly reduce severe exacerbations.

Other considerations

There are no head-to-head comparisons between this regimen and ICS-formoterol maintenance-and-reliever therapy (MART), both of which include an anti-inflammatory reliever (AIR). However, as ICS-SABA is not recommended for regular use, and its use as the reliever in Steps 3–5 requires the patient to have different maintenance and reliever inhalers, this regimen is more complex for patients than GINA Track 1 with ICS-formoterol, in which the same medication is used for both maintenance and reliever doses. Transition between treatment steps with as-needed ICS-SABA may also be more complex than in GINA Track 1 as there is only one small study of as-needed-only ICS-SABA (beclometasone-salbutamol) as a Step 2 treatment.

Practice points

A maximum number of 6 as-needed doses (each 2 puffs of 100/100 mcg budesonide-salbutamol [80/90 mcg delivered dose]) can be taken in a day. It is essential to educate patients about the different purpose of their maintenance and
reliever inhalers, and to train them in correct inhaler technique with both devices if they are different; this also applies to SABA relievers.

Track 2 (alternative) Step 4 treatment for adults and adolescents: medium or high-dose ICS-LABA plus as-needed SABA or plus as-needed ICS-SABA

Maintenance medium- or high-dose ICS-LABA plus as-needed SABA: This is an alternative approach if MART is not possible, or if a patient's asthma is stable with good adherence and no exacerbations on their current therapy. As above, individual ICS responsiveness varies, and some patients whose asthma is uncontrolled or who have frequent exacerbations on low-dose ICS-LABA despite good adherence and correct inhaler technique may benefit from maintenance medium-dose ICS-LABA (Evidence B) plus as-needed SABA, if MART is not available. However, before prescribing a regimen with SABA reliever, consider whether the patient is likely to be adherent with their ICS-containing treatment, as otherwise they will be at higher risk of exacerbations. Occasionally, high-dose ICS-LABA may be needed.

Maintenance ICS-LABA plus as-needed combination ICS-SABA (≥18 years)

Population

In the double-blind MANDALA study, the population relevant to Step 4 recommendations comprised patients with poor asthma control and a history of severe exacerbations who were taking maintenance medium-dose ICS-LABA or high-dose ICS.

Evidence

In the sub-population of patients who were taking maintenance medium-dose ICS-LABA or high-dose ICS (Step 4 treatment), there was no significant increase in time to first severe exacerbation with as-needed budesonide-salbutamol (albuterol) 2 inhalations of 100/200 mcg metered dose (80/90 mcg delivered dose), compared with as-needed salbutamol (hazard ratio 0.81; CI 0.61–1.07). More studies in this population are needed.

Other considerations

There are no head-to-head comparisons between this regimen and ICS-formoterol MART, both of which include an anti-inflammatory reliever. However, as ICS-SABA is not recommended for regular use, and its use as the reliever in Steps 3–5 requires the patient to have different maintenance and reliever inhalers, this regimen is more complex for patients than GINA Track 1 with ICS-formoterol in which the same medication is used for both maintenance and reliever doses.

Practice points

A maximum number of 6 as-needed doses (each 2 puffs of 100/100 mcg budesonide-salbutamol [80/90 mcg delivered dose]) can be taken in a day. It is essential to educate patients about the different purpose of their maintenance and reliever inhalers, and to train them in correct inhaler technique with both devices if they are different; this also applies to SABA relievers.

OTHER STEP 1–4 TREATMENTS IN ADULTS AND ADOLESCENTS (TRACKS 1 AND 2)

Other Step 1 or 2 treatment options for adults and adolescents

These options are shown at the bottom of the main treatment figure (Box 4-6, p.77). They have limited indications, or less evidence for efficacy of safety, than the medications shown in the two treatment tracks.

Specific allergen immunotherapy (see p.104): For adult patients sensitized to house dust mite, with suboptimally controlled asthma despite low- to high-dose ICS, consider adding sublingual allergen immunotherapy (SLIT), provided FEV₁ is >70% predicted.

Leukotriene receptor antagonists (LTRAs): LTRAs, which include montelukast, zafirlukast and zileuton, are less effective than ICS, particularly for exacerbations (Evidence A). Before prescribing montelukast, health professionals should
consider its benefits and risks, and patients or parents/caregivers should be counselled about the risk of neuropsychiatric events.295

Daily ICS-LABA as initial treatment: Regular daily combination low-dose ICS-LABA as the initial maintenance controller treatment (i.e., in patients previously treated with SABA alone) reduces symptoms and improves lung function, compared with low-dose ICS.348 However, it is more expensive and does not further reduce the risk of exacerbations compared with ICS alone (Evidence A).348

Seasonal ICS-containing treatment: For patients with purely seasonal allergic asthma, e.g., with birch pollen, with no interval asthma symptoms, regular daily ICS or as-needed low-dose ICS-formoterol should be started immediately symptoms commence, and be continued for four weeks after the relevant pollen season ends (Evidence D).

Other Step 3 treatment options for adults and adolescents

These options are shown at the bottom of the main treatment figure (Box 4-6, p.77). They have limited indications, or less evidence for efficacy of safety, than the medications shown in the two treatment tracks.

Specific allergen immunotherapy (see p.104): For adult patients sensitized to house dust mite, with suboptimally controlled asthma despite low- to high-dose ICS, consider adding sublingual allergen immunotherapy (SLIT), provided FEV₁ is >70% predicted.345,346

Medium-dose ICS: Another option for adults and adolescents is to increase ICS to medium dose166 (see Box 4-2, p.71) but, at population level, this is less effective than adding a LABA (Evidence A).349,350 Other less efficacious options are low-dose ICS-containing therapy plus either LTRA347 (Evidence A for lower efficacy than ICS) or low-dose, sustained-release theophylline351 (lack of efficacy, and safety concerns). Note the concerns about neuropsychiatric adverse effects with montelukast.295

Other Step 4 treatment options for adults and adolescents

These options are shown at the bottom of the main treatment figure (Box 4-6, p.77). They have limited indications, or less evidence for efficacy of safety, than the medications shown in the two treatment tracks.

Long-acting muscarinic antagonists: LAMAs may be considered as add-on therapy in a separate inhaler for patients aged ≥6 years (tiotropium), or in a combination (‘triple’) inhaler for patients aged ≥18 years (beclometasone-formoterol-glycopyrronium; fluticasone furoate-vilanterol-umeclidinium; mometasone-indacaterol-glycopyrronium) if asthma is persistently uncontrolled despite medium or high-dose ICS-LABA. Adding a LAMA to medium or high-dose ICS-LABA modestly improved lung function (Evidence A)296,352-356 but with no difference in symptoms. In some studies, adding LAMA to ICS-LABA modestly reduced exacerbations, compared with some medium- or high-dose ICS-LABA comparators.329,333,334 In meta-analyses, there was a 17% reduction in risk of severe exacerbations with addition of LAMA to medium- or high-dose ICS-LABA; sub-group analysis suggested that this benefit was mainly in patients with a history of exacerbations in the previous year.357,358

However, for patients experiencing exacerbations despite low-dose ICS-LABA, the ICS dose should be increased to at least medium, or treatment switched to maintenance-and-reliever therapy with ICS-formoterol, before considering adding a LAMA. In one study, the severe exacerbation rate was lower in patients receiving high-dose fluticasone furoate-vilanterol (ICS-LABA) than with low- to medium-dose fluticasone furoate-vilanterol-umeclidinium (ICS-LABA-LAMA).354 For patients prescribed an ICS-LABA-LAMA with a non-formoterol LABA, the appropriate reliever is SABA or ICS-SABA.

In Step 4, there is insufficient evidence to support ICS-LAMA over low- or medium-dose ICS-LABA combination; all studies were with ICS and tiotropium in separate inhalers.352 In one analysis, response to adding LAMA to medium-dose ICS, as assessed by FEV₁, ACQ, and exacerbations, was not modified by baseline demographics, body-mass index, FEV₁, FEV₁ responsiveness, or smoking status (past smoking versus never).359

Allergen immunotherapy (see p.104): Consider adding sublingual allergen immunotherapy (SLIT) for adult patients with sensitization to house dust mite, with suboptimally controlled asthma despite low- to high-dose ICS, but only if FEV₁ is >70% predicted.345,346
Other options: For medium- or high-dose budesonide, efficacy may be improved with dosing four times daily (Evidence B), but adherence may be an issue. For other ICS, twice-daily dosing is appropriate (Evidence D). Other options for adults or adolescents that can be added to a medium or high-dose ICS, but that are less efficacious than adding LABA, include LTRA (Evidence A), or low-dose sustained-release theophylline (Evidence B), but neither of these has been compared with maintenance-and-reliever therapy with ICS-formoterol. Note the concern about potential neuropsychiatric adverse effects with montelukast.

STEP 5 (TRACKS 1 AND 2) IN ADULTS AND ADOLESCENTS

Preferred treatment at Step 5 in adults and adolescents: refer for expert assessment, phenotyping, and add-on therapy *(for more details, see Section 8, p.139)*

Patients of any age with persistent symptoms or exacerbations despite correct inhaler technique and good adherence with Step 4 treatment, and in whom other controller options have been considered, should be referred to a specialist with expertise in investigation and management of severe asthma, if available (Evidence D).

In severe asthma, as in mild–moderate asthma, participants in randomized controlled trials may not be representative of patients seen in clinical practice. For example, a registry study found that over 80% of patients with severe asthma would have been excluded from major regulatory studies evaluating biologic therapy.

Recommendations from the GINA Short Guide and decision tree on Diagnosis and Management of difficult-to-treat and severe asthma in adolescent and adult patients are included in Section 8 (p.139). These recommendations emphasize the importance of first optimizing existing therapy and treating modifiable risk factors and comorbidities (see Box 8-2, p.142). If the patient still has uncontrolled symptoms and/or exacerbations, additional treatment options that may be considered may include the following *(always check local eligibility and payer criteria)*.

Combination high-dose ICS-LABA

Combination high-dose ICS-LABA may be considered in adults and adolescents, but for most patients, the increase in ICS dose generally provides little additional benefit (Evidence A), and there is an increased risk of side-effects, including adrenal suppression. A high dose is recommended only on a trial basis for 3–6 months when good asthma control cannot be achieved with medium dose maintenance-and-reliever therapy with ICS-formoterol or medium-dose ICS plus LABA and/or a third controller (e.g., LTRA or sustained-release theophylline with a SABA reliever (Evidence B)). Note safety concerns with montelukast.

Maintenance-and-reliever therapy (MART) with ICS-formoterol

If a patient treated with medium-dose MART requires addition of biologic therapy, it is not logical to switch them from MART to conventional ICS-LABA plus as-needed SABA, as this may increase the risk of exacerbations. There is little evidence about initiating MART in patients receiving add-on treatment such as LAMA or biologic therapy. However, in one study, patients with severe eosinophilic asthma that was well controlled on benralizumab and high-dose ICS-LABA were randomized to budesonide-formoterol, either as high dose maintenance plus as-needed SABA, or as medium-dose MART with subsequent 8-weekly options for down-titration. Asthma remained stable after the switch from high-dose ICS-formoterol to medium-dose MART, supporting the safety of MART in this population on Step 5 treatment. Most patients randomized to MART were able to further reduce their ICS-formoterol dose, but there was an increase in FeNO and decrease in FEV₁ in those who stepped down to as-needed-only ICS-formoterol, suggesting that maintenance doses of ICS-formoterol should not be stopped.

Add-on long-acting muscarinic antagonists

Add-on long-acting muscarinic antagonists (LAMA) can be prescribed in a separate inhaler (tiotropium), or in a combination (‘triple’) inhaler for patients aged ≥18 years (beclometasone-formoterol-glycopyrronium; fluticasone furoate-vilanterol-umeclidinium; mometasone-indacaterol-glycopyrronium) if asthma is not well controlled with medium or high-dose ICS-LABA. Adding LAMA to ICS-LABA modestly improves lung function (Evidence A), but not
quality of life, with no clinically important change in symptoms. Studies showed a reduction in exacerbation risk; in meta-analyses, overall, there was a 17% reduction in risk of severe exacerbations requiring oral corticosteroids (Evidence A). Some studies showed a reduction in exacerbation risk; in meta-analyses, overall, there was a 17% reduction in risk of severe exacerbations requiring oral corticosteroids (Evidence A). For patients with exacerbations despite ICS-LABA, it is essential that sufficient ICS is given (i.e., at least medium-dose ICS-LABA) before considering adding a LAMA. For patients prescribed an ICS-LABA-LAMA with a non-formoterol LABA, the appropriate reliever is SABA or ICS-SABA; patients prescribed ICS-formoterol-LAMA can continue ICS-formoterol reliever.

Azithromycin

Add-on azithromycin (three times a week) can be considered after specialist referral for adult patients with persistent symptomatic asthma despite high-dose ICS-LABA. Before considering add-on azithromycin, sputum should be checked for atypical mycobacteria, ECG should be checked for long QTc (and re-checked after a month on treatment), and the risk of increasing antimicrobial resistance should be considered. Diarrhea is more common with azithromycin 500 mg 3 times per week. Treatment for at least 6 months is suggested, as a clear benefit was not seen by 3 months in the clinical trials. The evidence for this recommendation includes a meta-analysis of two clinical trials in adults with persistent asthma symptoms that found reduced asthma exacerbations among those taking medium or high-dose ICS-LABA who had either an eosinophilic or non-eosinophilic profile and in those taking high-dose ICS-LABA (Evidence B). The option of add-on azithromycin for adults is recommended only after specialist consultation because of the potential for development of antibiotic resistance at the patient or population level.

Add-on biologic therapy

Options recommended by GINA for patients with uncontrolled severe asthma despite optimized maximal therapy (see more details in Section 8, p.139) include:

- Add-on anti-immunoglobulin E (anti-IgE) (subcutaneous (SC) omalizumab) for patients aged ≥ 6 years with severe allergic asthma (Evidence A)
- Add-on anti-interleukin-5/5Rα (SC mepolizumab for ages ≥ 6 years, SC benralizumab for ages ≥12 years, or IV reslizumab for ages ≥18 years) for patients with severe eosinophilic asthma (Evidence A)
- Add-on anti-interleukin-4Rα (SC dupilumab) for patients aged ≥ 6 years with severe eosinophilic/Type 2 asthma, or those requiring treatment with maintenance OCS (Evidence A)
- Add-on anti-thymic stromal lymphopoietin (anti-TSLP) (SC tezepelumab) for patients aged ≥12 years with severe asthma (Evidence A)

Sputum-guided treatment

For adults with persisting symptoms and/or exacerbations despite high-dose ICS or ICS-LABA, treatment may be adjusted based on eosinophilia (>3%) in induced sputum. In severe asthma, this strategy leads to reduced exacerbations and/or lower doses of ICS (Evidence A) but few clinicians currently have access to routine sputum testing.

Bronchial thermoplasty

Add-on treatment with bronchial thermoplasty may be considered for some adult patients with severe asthma (Evidence B). Evidence is limited and in selected patients (see Bronchial thermoplasty, p.106). The long-term effects compared with control patients, including for lung function, are not known.

Oral corticosteroids

As a last resort, add-on low-dose OCS (≤7.5 mg/day prednisone equivalent) may be considered for some adults with severe asthma (Evidence D) but maintenance OCS is often associated with substantial cumulative side effects (Evidence A). It should only be considered for adults with poor symptom control and/or frequent exacerbations despite good inhaler technique and adherence with Step 5 treatment, and after exclusion of other contributory factors and trial of other add-on treatments including biologics where available and affordable. Patients should be counselled about potential side-effects. They should be assessed and monitored for risk of adrenal suppression and corticosteroid-
induced osteoporosis, and those expected to be treated for ≥3 months should be provided with relevant lifestyle counseling and prescription of therapy for prevention of osteoporosis and fragility fractures (where appropriate). 395

NON-RECOMMENDED BRONCHODILATORS

Anticholinergic agents in the absence of ICS: In adults, inhaled short-acting muscarinic antagonists (SAMA) like ipratropium are potential alternatives to SABA for routine relief of asthma symptoms; however, these agents have a slower onset of action than inhaled SABA. Like SABAs (p.87) they should not be used without ICS. Use of long-acting muscarinic antagonists (LAMA) in asthma without concomitant ICS is associated with an increased risk of severe exacerbations. 396

Oral bronchodilators: Oral SABA and theophylline have a higher risk of side-effects and are not recommended. For clinicians in regions without access to inhaled therapies, advice on minimizing the frequency and dose of these oral medications has been provided elsewhere. 27 No long-term safety studies have been performed to assess the risk of severe exacerbations associated with oral SABA or theophylline use in patients not also taking ICS.

Formoterol without ICS: The rapid-onset LABA, formoterol, is as effective as SABA as a reliever medication in adults and children, 397 and reduces the risk of severe exacerbations by 15–45%, compared with as-needed SABA, 323,398,399 but use of regular or frequent LABA without ICS is strongly discouraged because of the risk of exacerbations (Evidence A). 151,400
ABOUT ASTHMA TREATMENT FOR CHILDREN 6–11 YEARS

For general principles of asthma treatment, and non-pharmacological strategies, see Section 3, p.48.
For flowchart on initial asthma treatment for children 6–11 years, see p.94.
For asthma treatment steps in children 6–11 years, see p.96.

INITIAL ASTHMA TREATMENT IN CHILDREN 6–11 YEARS

Box 4-10. Initial asthma treatment for children aged 6–11 years with a diagnosis of asthma

These recommendations are based on evidence, where available, and on consensus.

<table>
<thead>
<tr>
<th>Presenting symptoms</th>
<th>Preferred INITIAL treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrequent asthma symptoms, e.g., 1–2 days/week or less</td>
<td>Low-dose ICS taken whenever SABA is taken (Evidence B) In combination or in separate inhalers</td>
</tr>
<tr>
<td>Asthma symptoms 2–5 days/week</td>
<td>Low-dose ICS plus as-needed SABA (Evidence A) Other options include taking ICS whenever SABA is taken in combination or separate inhalers (Evidence B), or daily LTRA† (Evidence A for less effectiveness for exacerbations than ICS). Consider likely adherence with maintenance treatment if reliever is SABA.</td>
</tr>
<tr>
<td>Asthma symptoms most days (e.g., 4–5 days/week); or waking due to asthma once a week or more</td>
<td>Low-dose ICS-LABA plus as needed SABA (Evidence A), OR Medium-dose ICS plus as-needed SABA (Evidence A), OR Very-low-dose ICS-formoterol maintenance-and-reliever (Evidence B) Other options include daily low-dose ICS and LTRA†, plus as-needed SABA.</td>
</tr>
<tr>
<td>Daily asthma symptoms, waking at night once or more a week, and low lung function</td>
<td>Medium-dose ICS-LABA plus as-needed SABA, OR low-dose ICS-formoterol maintenance-and-reliever (MART).</td>
</tr>
<tr>
<td>Initial asthma presentation is during an acute exacerbation.</td>
<td>Treat as for exacerbation (Box 9-4, p.167), including a short course of OCS if the exacerbation is severe; commence Step 3 or Step 4 treatment, and arrange follow-up.</td>
</tr>
</tbody>
</table>

Before starting initial controller treatment

- Record evidence for the diagnosis of asthma, if possible.
- Record the child’s level of symptom control and risk factors, including lung function (Box 2-2, p.37; Box 2-3, p.40).
- Consider factors influencing choice between available treatment options (Box 3-4, p.54).
- Choose a suitable inhaler (Box 5-1, p.109) and ensure that the child can use the inhaler correctly.
- Schedule an appointment for a follow-up visit.

After starting initial controller treatment

- Review child’s response (Box 2-2, p.37) after 2–3 months, or earlier depending on clinical urgency.
- See Box 4-12 (p.96) for recommendations for ongoing treatment and other key management issues.
- Step down treatment once good control has been maintained for 3 months (Box 4-13, p.102).

This advice is based on evidence from available studies and from consensus, including considerations of cost. †If prescribing LTRA, advise about the risk of neuropsychiatric adverse effects. See Box 4-2 (p.71) for low, medium and high ICS doses in children, and Box 4-8 (p.84) for MART doses in children. See list of abbreviations (p.11).
Box 4-11. Flowchart for selecting initial treatment in children aged 6–11 years with a diagnosis of asthma

These recommendations are based on evidence, where available, and on consensus. See list of abbreviations (p. 11). See Box 4-2 (p. 71) for low, medium and high ICS doses in children. See Box 4-8 (p. 84) for medications and doses for MART in children.
ASTHMA TREATMENT STEPS FOR CHILDREN 6–11 YEARS

Box 4-12. Personalized management for children 6–11 years to control symptoms and minimize future risk

GINA 2024 – Children 6–11 years

Personalized asthma management:
Assess, Adjust, Review

Asthma medication options:
Adjust treatment up and down for individual child’s needs

<table>
<thead>
<tr>
<th>PREFERRED CONTROLLER</th>
<th>RELIEVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 1
Low dose ICS taken whenever SABA taken*</td>
<td>As-needed SABA (or ICS-formoterol reliever* in MART in Steps 3 and 4)</td>
</tr>
<tr>
<td>STEP 2
Daily low dose inhaled corticosteroid (ICS) (see table of ICS dose ranges for children)</td>
<td>
Daily leukotriene receptor antagonist (LTRA†), or low dose ICS taken whenever SABA taken</td>
</tr>
<tr>
<td>STEP 3
Low dose ICS-LABA, OR medium dose ICS, OR very low dose ICS-formoterol maintenance and reliever (MART)</td>
<td>
Low dose ICS + LTRA†
Add tiotropium or add LTRA†</td>
</tr>
<tr>
<td>STEP 4
Refer for expert advice, OR medium dose ICS-LABA, OR low dose ICS-formoterol maintenance and reliever therapy (MART)</td>
<td>
As last resort, consider add-on low dose OCS, but consider side-effects</td>
</tr>
<tr>
<td>STEP 5
Refer for phenotypic assessment ± higher dose ICS-LABA or add-on therapy, e.g. anti-IgE, anti-IL4Ra, anti-IL5</td>
<td></td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11). *Anti-inflammatory reliever therapy (AIR); see Box 4-8. †If prescribing leukotriene receptor antagonists, note concerns about potential neuropsychiatric adverse effects. For initial asthma treatment in children aged 6–11 years, see Box 4-10 (p.94) and 4-11 (p.95). See Box 4-2 (p.71) for low, medium and high ICS doses in children. See Box 4-8 (p.84) for MART doses for children 6–11 years.
The steps below refer to the recommended asthma treatment options shown in Box 4-12 p.96.

Suggested low, medium and high doses for a range of ICS formulations are shown in Box 4-2 (p.71).

Preferred Step 1 treatment for children 6–11 years: taking ICS whenever SABA is taken

For children 6–11 years with asthma symptoms that are well controlled on low-dose ICS, or who are using SABA alone and have symptoms less than twice a week, the recommended treatment is taking ICS whenever SABA is taken.

Populations studied

The TREXA study[^325] was in children 5–18 years, with mild persistent asthma that was well controlled during a 4-week run-in on low-dose ICS with as-needed SABA. The ASIST study[^327] was in African-American children aged 6–17 years, whose asthma was well controlled on low-dose ICS with as-needed SABA in a run-in period of 2–4 weeks. Results for children 6–11 years have not been published separately.

Evidence

Both studies used separate albuterol and beclometasone dipropionate (BDP) 50 mcg [40 mcg delivered dose] inhalers for the intervention, 2 puffs of BDP for each 2 puffs of albuterol (with the inhalers taped together, back-to-back, in the TREXA study. In the TREXA study, the comparators were as-needed SABA and as-needed ICS+SABA, each with or without regular ICS. The highest rate of exacerbations was among the children receiving SABA alone, and there was a significant reduction in treatment failures in the group that took ICS whenever SABA was taken, as well as in the other ICS-containing groups.[^325] In the ASIST study, symptom-based adjustment of ICS dose was associated with similar outcomes as with physician-adjusted treatment, with lower average ICS dose (Evidence B).[^327] Exacerbations and symptoms were similar with this regimen as with maintenance ICS plus as-needed SABA.

Other considerations

Neither of these studies was sufficiently powered to examine severe exacerbations as an outcome. In the TREXA study, there were no differences in asthma symptom control or airway hyperresponsiveness between the treatment groups. The children receiving daily ICS had lower linear growth than those receiving as-needed SABA or as-needed ICS+SABA.[^325] In the ASIST study, interviews with parents/caregivers indicated that those whose children were randomized to as-needed ICS-SABA felt more in control of their child’s asthma than those whose children were randomized to physician-based adjustment.[^327]

Concerns around SABA-only treatment are also relevant to children, and should be considered when initiating Step 1 treatment (see other controller options for children in Step 2, below). Studies of as needed-only ICS-formoterol in children aged 6–11 years are underway.

Not recommended

SABA-only treatment is not recommended in children 6–11 years, as for adults and adolescents. Although inhaled SABAs are highly effective for the quick relief of asthma symptoms,[^328] children whose asthma is treated with SABA alone (compared with ICS) are at increased risk of asthma-related death (Evidence A)[^87,^329] and urgent asthma-related health care (Evidence A)[^330] even if they have good symptom control.[^331] In children, dispensing of three or more SABA inhalers in a year is associated with a doubling of risk of emergency department presentation.

Oral SABA and theophylline are not recommended because of the higher risk of side-effects and lower efficacy. For clinicians in regions without access to inhaled therapies, advice on minimizing the frequency and dose of these oral medications has been provided elsewhere.[^27] No long-term safety studies have been performed to assess the risk of severe exacerbations associated with oral SABA or theophylline use in children not also taking ICS.

The rapid-onset LABA, formoterol, is as effective as SABA as a reliever medication in children as well as in adults,[^397] and reduces the risk of severe exacerbations by 15–45%, compared with as-needed SABA,[^323,^396,^398] but use of regular or frequent LABA without ICS is strongly discouraged because of the risk of exacerbations (Evidence A).[^151,^400]
Preferred Step 2 treatment for children 6–11 years: regular low-dose ICS plus as-needed SABA

The preferred controller option for children at Step 2 is regular low-dose ICS plus as-needed SABA (see Box 4-2, p.71 for ICS dose ranges in children). This reduces the risk of serious exacerbations compared with SABA-only treatment.\\(^{307}\)

Evidence

Evidence in children includes the large long-term START study, in which patients aged 6–66 years with newly diagnosed asthma were provided with placebo or low-dose budesonide (200 mcg/day for children <11 years) for 3 years. Low-dose ICS reduced the risk of serious exacerbations by 40%, improved lung function, increased symptom-free days and decreased days lost from school years.\\(^{401}\)

Alternative Step 2 treatment option for children 6–11 years: taking low-dose ICS whenever SABA is taken

Another alternative option at Step 2 is daily LTRA, which, overall, is less effective than ICS,\\(^{347}\) and there are concerns about potential neuropsychiatric adverse events.\\(^{295}\)

Not recommended

Sustained-release theophylline has only weak efficacy in asthma (Evidence B)\\(^{367,402,403}\) and side-effects are common, and may be life-threatening at higher doses.\\(^{404}\) Chromones (nedocromil sodium and sodium cromoglycate) have been discontinued globally; these had a favorable safety profile but low efficacy (Evidence A),\\(^{405-407}\) and their pMDI inhalers required burdensome daily washing to avoid blockage.

Preferred Step 3 treatment options for children 6–11 years: regular medium dose ICS or low-dose ICS-LABA plus SABA reliever, or MART with very low-dose ICS-formoterol

In children, after checking inhaler technique and adherence, and treating modifiable risk factors, there are three preferred options at a population level:

- Increase ICS to medium dose (see Box 4-2, p.71) plus as-needed SABA reliever (Evidence A),\\(^{408}\) or
- Change to combination low-dose ICS-LABA plus as-needed SABA reliever (Evidence A),\\(^{409}\) or
- Switch to maintenance-and-reliever therapy (MART) with a very low dose of ICS-formoterol (Evidence B).\\(^{410}\) For a summary of medications and doses, see Box 4-8 (p.84).

Evidence

In a large study of children aged 4–11 years with a history of an exacerbation in the previous year, combination ICS-LABA was non-inferior to the same dose of ICS alone for severe exacerbations, with no difference in symptom control or reliever use.\\(^{411}\) In children, a single study of maintenance-and-reliever therapy (MART) with very low-dose budesonide-formoterol (100/6 metered dose, 80/4.5 mcg delivered dose for both maintenance and reliever) showed a large reduction in exacerbations, compared with the same dose of budesonide-formoterol plus SABA reliever, or compared with higher-dose ICS.\\(^{410}\)

Individual children’s responses vary, so try the other controller options above before considering Step 4 treatment.\\(^{412}\)

Other Step 3 treatment options for children 6–11 years

A 2014 systematic review and meta-analysis did not support the addition of LTRA to low-dose ICS in children.\\(^{413}\) Note concerns about the risk of neuropsychiatric adverse effects.\\(^{295}\)
Preferred Step 4 treatment options for children 6–11 years: refer for expert advice, or increase treatment to medium-dose ICS-LABA plus as-needed SABA, or MART with low-dose ICS-formoterol

For children whose asthma is not adequately controlled by low-dose maintenance ICS-LABA with as-needed SABA, consider referral for expert advice. Alternatively, treatment may be increased to medium-dose ICS-LABA (Evidence B). For maintenance-and-reliever therapy (MART) with budesonide-formoterol, the maintenance dose may be increased to 100/6 mcg twice daily (metered dose; 80/4.5 mcg delivered dose) (Evidence D); this is still a low-dose regimen. For a summary of medications and doses, see Box 4-8 (p.84).

If asthma is not well controlled on medium-dose ICS (Box 4-2B, p.71), refer the child for expert assessment and advice.

Other Step 4 options for children 6–11 years that may be considered after referral include:

- **Increasing ICS-LABA dose:** increasing the ICS-LABA dose to a high pediatric ICS dose (Box 4-2B, p.71) can be considered, but adverse effects must be considered.
- **Tiotropium:** Tiotropium (a long-acting muscarinic antagonist) by mist inhaler may be used as add-on therapy in children aged 6 years and older. It modestly improves lung function and reduces exacerbations (Evidence A), largely independent of baseline IgE or blood eosinophils.
- **LTRA:** If not trialed before, LTRA could be added (but note the concern about risks of neuropsychiatric adverse effects with montelukast). Add-on theophylline is not recommended for use in children due to lack of efficacy and safety data.

Preferred treatment at Step 5 in children 6–11 years: refer for expert assessment, phenotyping, and add-on therapy

Children with persistent asthma symptoms or exacerbations despite correct inhaler technique and good adherence with Step 4 treatment and in whom other controller options have been considered, should be referred to a specialist with expertise in investigation and management of severe asthma, if available (Evidence D).

In severe asthma, as in mild–moderate asthma, participants in randomized controlled trials may not be representative of patients seen in clinical practice. For example, a registry study found that over 80% of patients with severe asthma would have been excluded from major regulatory studies evaluating biologic therapy.

Add-on long-acting muscarinic antagonists

Tiotropium, a long-acting muscarinic antagonists (LAMA), can be prescribed as an add-on treatment in a separate inhaler for patients aged ≥6 years if asthma is not well controlled with medium or high-dose ICS-LABA.

Add-on biologic therapy

Options recommended by GINA for children aged 6–11 years with uncontrolled severe asthma despite optimized maximal therapy (see chapter 3.5 for more details) include:

- **Add-on anti-immunoglobulin E (anti-IgE) (omalizumab)** for patients aged ≥6 years with severe allergic asthma (Evidence A).
- **Add-on anti-interleukin-5/5Rα (subcutaneous mepolizumab)** for patients aged ≥6 years with severe eosinophilic asthma (Evidence A).
- **Add-on anti-interleukin-4Rα (subcutaneous dupilumab)** for patients aged ≥6 years with severe eosinophilic/Type 2 asthma.

Maintenance-and-reliever therapy (MART) with ICS-formoterol

There is no direct evidence about initiating MART in children receiving add-on treatment such as LAMA or biologic therapy. Switching a patient from MART to conventional ICS-LABA plus as-needed SABA may increase the risk of exacerbations.
How often should asthma be reviewed?

Each patient’s asthma should be reviewed regularly to monitor symptom control, risk factors and occurrence of exacerbations, and to document response to any treatment changes. For most controller medications, improvement in symptoms and lung function begins within days of initiating treatment, but the full benefit may only be reached after 3–4 months,415 or even later in patients with severe and chronically under-treated asthma.416

All healthcare providers should be encouraged to assess asthma control, adherence and inhaler technique at every visit, not just when the patient presents because of their asthma.417 The frequency of visits depends upon the patient’s initial level of control, their response to treatment, and their level of engagement in self-management.

Ideally, patients should be seen 1–3 months after starting treatment and every 3–12 months thereafter. After an exacerbation, a review visit within 1 week should be scheduled (Evidence D).418

Stepping up asthma treatment

Asthma is a variable condition, and adjustments of controller treatment by the clinician and/or the patient may be needed.419

Day-to-day adjustment using an anti-inflammatory reliever (AIR)

For patients whose reliever inhaler is combination budesonide-formoterol or beclometasone-formoterol (with or without maintenance ICS-formoterol), the patient adjusts the number of as needed doses of ICS-formoterol from day to day according to their symptoms. This strategy reduces the risk of developing a severe exacerbation requiring OCS within the next 3–4 weeks.126-128 As-needed combination budesonide-salbutamol is an anti-inflammatory reliever option that has been studied in Steps 3–5.343

Short-term step-up (for 1–2 weeks)

A short-term increase in maintenance ICS dose for 1–2 weeks may be necessary (e.g., during viral infections or seasonal allergen exposure). This increase may be initiated by the patient according to their written asthma action plan (Box 9-2, p.162), or by the healthcare provider.

Sustained step-up (for at least 2–3 months)

Although at a group level most benefit from ICS is obtained at low dose, individual ICS responsiveness varies; some patients whose asthma is uncontrolled on low-dose ICS-LABA despite good adherence and correct technique may benefit from increasing the maintenance dose to medium. A step-up in treatment may be recommended (Box 4-6, p.77) after confirming that the symptoms are due to asthma, inhaler technique and adherence are satisfactory, and modifiable risk factors such as smoking have been addressed (Box 3-5, p.55). Any step-up should be regarded as a therapeutic trial; if there is no response after 2–3 months, treatment should be reduced to the previous level, and alternative treatments or referral considered.

Stepping down treatment when asthma is well controlled

Once good asthma control has been achieved and maintained for 2–3 months and lung function has reached a plateau, treatment can often be successfully reduced, without loss of asthma control. The aims of stepping down are:

- To find the patient’s minimum effective treatment, i.e., to maintain good control of symptoms and exacerbations, and to minimize the costs of treatment and potential for side-effects
- To encourage the patient to continue ICS-containing treatment. Patients prescribed maintenance controller treatment in either Track often experiment with intermittent treatment through concern about the risks or costs of daily treatment.420 For patients prescribed GINA Track 1 MART, the ICS-formoterol reliever provides a safety net during planned step-down or if adherence with maintenance doses is poor. However, for patients prescribed maintenance...
controller with a SABA reliever (GINA Track 2, Steps 2–5), poor adherence leaves them exposed to the risks of SABA-only treatment. Step-down options for patients on different treatment steps are shown in Box 4-13 (p.102).

Before stepping down

The approach to stepping down will differ from patient to patient depending on their current treatment, risk factors and preferences. There are few data on the optimal timing, sequence and magnitude of treatment reductions in asthma. Factors associated with a greater risk of exacerbation after step-down include a history of exacerbations and/or emergency department visit for asthma in the previous 12 months, and a low baseline FEV1. Other predictors of loss of control during dose reduction include airway hyperresponsiveness and sputum eosinophilia, but these tests are not readily available in primary care.

Any treatment step-down should be considered as a therapeutic trial, evaluating the response in terms of both symptom control and exacerbation frequency. Before stepping down, the patient should be given a written asthma action plan and instructions for how and when to re-start their previous treatment if their symptoms worsen.

How to step asthma treatment down

Decisions about treatment step-down should be based on individual assessment. In one study of patients with well-controlled asthma on medium-dose ICS-LABA, reducing the ICS dose and removing the LABA had similar effects on a composite treatment failure outcome. However, stopping LABA was associated with lower lung function and more hospitalizations, and decreasing the ICS dose was inferior to maintaining a stable dose of ICS-LABA.

If treatment is stepped down too far or too quickly, the risk of exacerbations may increase even if symptoms remain reasonably controlled (Evidence B). Higher baseline FeNO has not been demonstrated to predict exacerbations following step-down of ICS dose. A meta-analysis suggested that greater reduction in ICS dose may be able to be achieved in patients with baseline FeNO <50 ppb, but the findings point to the need for further research. Complete cessation of ICS is associated with a significantly increased risk of exacerbations (Evidence A).

Stepping down from daily low-dose ICS plus as-needed SABA to as needed-only ICS-formoterol provides similar or greater protection from severe exacerbations and need for urgent health care, with similar symptom control and lung function and a much lower average daily ICS dose, compared with treatment with daily low-dose ICS plus as-needed SABA. Step-down strategies for different controller treatments are summarized in Box 4-13 (p.102); these are based on current evidence, but more research is needed. Few step-down studies have been performed in children.
Box 4-13. Options for stepping down treatment in adults and adolescents once asthma is well controlled

General principles of stepping down asthma treatment

- Consider stepping down when asthma symptoms have been well controlled and lung function has been stable for at least 3 months (Evidence D). If the patient has risk factors for exacerbations (Box 2-2, p.37), for example a history of exacerbations in the past year, or persistent airflow limitation, step down only with close supervision.
- Choose an appropriate time (no respiratory infection, patient not travelling, not pregnant).
- Approach each step as a therapeutic trial: engage the patient in the process, document their asthma status (symptom control, lung function and risk factors, Box 2-2, p.37), provide clear instructions, provide a written asthma action plan (Box 9-2, p.162) and ensure the patient has sufficient medication to resume their previous dose if necessary, monitor symptoms and/or PEF, and schedule a follow-up visit (Evidence D).
- Stepping down ICS doses by 25–50% at 3-month intervals is feasible and safe for most patients (Evidence A).

### Current step	Current medication and dose	Options for stepping down if asthma is well controlled and lung function stable for ≥3 months	Evidence
Step 5	High-dose ICS-LABA plus oral corticosteroids (OCS)	If Type 2-high severe asthma, add biologic therapy if eligible and reduce OCS (see Box 9-5, p.144 for more details). Optimize inhaled therapy to reduce OCS dose. Use sputum-guided approach to reducing OCS. For low-dose OCS, use alternate-day dosing.	A
Biologic therapy plus high-dose ICS-LABA	Cease other add-on medications especially OCS, then consider reducing ICS-LABA dose (see Box 8-5 (p.145) and p.145).	B	

Step 4 | Moderate- to high-dose ICS-LABA maintenance treatment | Continue combination ICS-LABA and reduce ICS component by 50%, by using available formulations. **Caution:** Discontinuing LABA may lead to deterioration. | B
| Medium-dose ICS-formoterol* as maintenance and reliever | Reduce maintenance ICS-formoterol* to low dose, and continue as-needed low-dose ICS-formoterol* reliever | D
| High-dose ICS plus second controller | Reduce ICS dose by 50% and continue second controller. | B

Step 3 | Low-dose ICS-LABA maintenance | Reduce ICS-LABA to once daily. **Caution:** Discontinuing LABA may lead to deterioration. | D
| Low-dose ICS-formoterol* as maintenance and reliever | Reduce maintenance ICS-formoterol* dose to once daily and continue as needed low-dose ICS-formoterol* reliever. | C
| Medium- or high-dose ICS | Reduce ICS dose by 50% and continue second controller. | D

Step 2 | Low-dose maintenance ICS | Once-daily dosing (budesonide, ciclesonide, mometasone, fluticasone furoate). | A
| Switch to as-needed-only low-dose ICS-formoterol | Switch to as-needed-only low-dose ICS-formoterol. | A
| Switch to taking ICS whenever SABA is taken | Switch to taking ICS whenever SABA is taken. | B

Step 1 | Low-dose maintenance ICS | | A

See list of abbreviations (p.11). *MART: low-dose budesonide-formoterol or beclometasone-formoterol (p.69).
Other strategies for adjusting asthma treatment

Some alternative strategies for adjusting asthma maintenance ICS-containing treatment have been evaluated:

- **Treatment guided by sputum eosinophil count**: in adults, this approach, when compared with guidelines-based treatment, leads to a reduced risk of exacerbations and similar levels of symptom control and lung function in patients with frequent exacerbations and moderate-severe asthma. However, few clinics have routine access to induced sputum analysis. There is insufficient evidence to assess this approach in children. Sputum-guided treatment is recommended for adult patients with moderate or severe asthma who are managed in (or can be referred to) centers experienced in this technique (Evidence A).

- **Treatment guided by fractional concentration of exhaled nitric oxide (FeNO)**: In several studies of FeNO-guided treatment, problems with the design of the intervention and/or control algorithms make comparisons and conclusions difficult. Results of FeNO measurement at a single point in time should be interpreted with caution. The relationship between FeNO and other Type 2 biomarkers is lost or altered in obesity. In a 2016 meta-analysis, FeNO-guided treatment in children and young adults with asthma was associated with a significant reduction in the number of patients with ≥1 exacerbation (OR 0.67; 95% CI 0.51–0.90) and in exacerbation rate (mean difference –0.27; 95% –0.49 to –0.06 per year) compared with guidelines-based treatment (Evidence A); FeNO-guided treatment was associated with similar benefits when compared with non-guidelines-based algorithms. However, a subsequent good-quality multicenter clinical trial in children with asthma in secondary and primary care centers found that the addition of FeNO to symptom-guided treatment did not reduce severe exacerbations over 12 months.

In non-smoking adults with asthma, no significant reduction in risk of exacerbations and in exacerbation rates was observed with FeNO-guided treatment, compared with treatment strategies similar to those in most guidelines; a difference was seen only in studies with other (non-typical) comparator approaches to adjustment of treatment. In a large study in pregnant women, there was no reduction in exacerbations with FeNO-guided treatment compared with usual care. In adults and in children, no significant differences were seen in symptoms or ICS dose with FeNO-guided treatment compared with other strategies.

- **Treatment guided by combination biomarkers**: An RCT in patients taking high-dose ICS-LABA compared a treatment adjustment strategy based on a composite of T2 biomarkers only with an algorithm based on ACQ-7 and history of recent exacerbation, but the findings were inconclusive because a substantial proportion of patients did not follow recommendations for treatment change.

- **Selection of add-on treatment for patients with severe asthma**: The assessment of severe asthma includes identification of the inflammatory phenotype, based on blood or sputum eosinophils or FeNO, to assess the patient’s eligibility for various add-on treatments including biologic therapy. A higher baseline blood eosinophil count and/or FeNO predicts a good asthma response to some biologic therapies (see Box 8-3, p.143 and Box 8-4, p.144).

Further studies are needed to identify the subpopulations of patients with asthma who are most likely to benefit from biomarker-guided adjustment of maintenance ICS-containing treatment, and the optimal frequency of monitoring, including for corticosteroid de-escalation strategies. Until more definitive evidence is available to support a specific strategy, GINA continues to recommend a comprehensive clinical evaluation that includes patient-reported symptoms as well as modifiable risk factors, environmental exposures comorbidities and patient preferences, when making treatment decisions for individual patients.
ALLERGEN IMMUNOTHERAPY

Allergen-specific immunotherapy may be considered as add-on therapy for adults and children with asthma who have clinically significant sensitization to aeroallergens, including in those with allergic rhinitis.10,11,439,440 It involves the identification of clinically relevant allergens and the administration of extracts in precisely calculated doses to induce desensitization and/or tolerance. Allergen immunotherapy is currently the only intervention with both an immune modifying effect and long-term efficacy on the allergic response. There are two approaches: subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT).

Few studies reporting effects of allergen immunotherapy on asthma have compared immunotherapy with pharmacological therapy, or used standardized outcomes such as exacerbations; furthermore, most studies have been performed in patients with mild asthma.441 The allergens most often tested in allergen immunotherapy studies are house dust mite and grass pollens. There is insufficient evidence about the safety and efficacy of allergen immunotherapy in patients with asthma who are sensitized to mold.442 More studies are needed to clarify the role of allergen immunotherapy in the development and progression of asthma, and in clinical asthma management.441

There are two approaches: subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT).

Subcutaneous immunotherapy (SCIT)

SCIT involves the administration of extracts in progressively higher doses, usually over a period of 3–5 years. There is considerable variation in the specific SCIT regimens used in clinical practice.

\textbf{Efficacy of SCIT for treatment of asthma}

Systematic reviews and meta-analysis of SCIT in the treatment of adult and pediatric asthma concluded that addition of SCIT led to a reduction in ICS dose requirement and/or the proportion of patients requiring ICS (moderate strength of evidence) and may improve asthma-specific quality of life and lung function, while reducing reliever use and the need for systemic corticosteroids (low strength of evidence).11,440 Few studies of SCIT to house dust mite have been conducted only in children, or report results for children separately.440 A 2020 systematic review of allergen immunotherapy in children with asthma aged 18 years of age and younger reported that SCIT led to a reduction in ICS requirement (moderate strength of evidence), and improved asthma-related quality of life and lung function (low strength of evidence).10

\textbf{Safety}

Safety data, overall, suggest that severe allergic reactions occur in fewer than 0.5–0.7\% of patients treated with SCIT.443 Serious adverse effects of SCIT are rare, but may include life-threatening anaphylactic reactions. Asthma, especially severe or uncontrolled asthma, has been identified as a major risk factor for severe and fatal adverse reactions to SCIT.444 Food allergy is also a risk factor for systemic reactions to SCIT.

\textbf{Advice}

- When considering SCIT for adults or children with asthma, the potential benefits, compared with pharmacological treatment and allergen avoidance, must be weighed against the risk of adverse effects and the inconvenience and cost of the prolonged course of therapy (typically 3–5 years), including the minimum 30 minutes of monitoring required after each injection (Evidence D).

- If allergen immunotherapy is considered for patients with severe asthma, the potential benefits and risks should be carefully identified and discussed as part of a shared decision-making process. To minimize the risk of severe reactions, SCIT should not be initiated until good asthma control (symptom control and risk factors for exacerbations) has been established.

- For each patient, SCIT should be tailored to their specific pattern of allergic sensitization. Given the complexity of making up SCIT extracts, combined with the risk of serious adverse events, SCIT prescription and administration should be limited to practitioners who are specifically trained and experienced in allergy testing and in the
formulation and administration of SCIT. Injections should be administered only in a healthcare setting with capability for, and personnel skilled in the management of, severe allergic reactions/anaphylaxis. SCIT should be administered only with high-quality extracts, and standardized extracts should be used, where available.

- Healthcare professionals who offer SCIT must establish effective safety protocols. The risk of severe adverse events is significantly reduced by systems that ensure appropriate supervision after injections, including training of office staff to track time after injections and monitor patient checkout.

Sublingual immunotherapy (SLIT)

Sublingual immunotherapy involves the administration of extracts either as tablet or drops administered under the tongue, with an induction phase in which the dose is progressively increased. The duration of SLIT depends on the allergens used (house dust mite or grass pollen).

Efficacy of SLIT for treatment of asthma

Several systematic reviews have examined the effect of SLIT for asthma in adults and children, but many of the studies were unblinded or used non-standardized outcomes. In general, there is limited evidence demonstrating effects of SLIT on important outcomes such as asthma exacerbations and quality of life, and few RCTs have compared SLIT with pharmacological therapy for asthma. A 2020 Cochrane review of 66 trials of SLIT for allergic rhinitis, in which at least 80% of participants also had allergic asthma, concluded that addition of SLIT may reduce the risk of asthma exacerbation requiring OCS or healthcare visits (low strength of evidence), but only one study in adults and one in children reported effects on healthcare visits. In a 2023 systematic review focusing on individuals (mainly adults) with allergic rhinitis and asthma, SLIT was associated with a significant reduction in asthma symptoms, compared with placebo, but there was no effect on ICS dose, FeNO, lung function or direct treatment cost.

House dust mite SLIT

European Academy of Allergy & Clinical Immunology (EAACI) guidelines recommend HDM SLIT as add-on treatment in adults with controlled or partially controlled HDM-driven allergic asthma. In a subsequent systematic review, addition of standardized HDM SLIT resulted in reduction in ICS dose in one RCT and improved asthma symptoms in two RCTs but there was no consistent effect on exacerbations in adolescents and adults with well or partly controlled asthma. There is no separate evidence for adolescents, but no reason to suppose that effectiveness and/or safety would be different than in adults.

Ragweed SLIT

In children with allergic rhinoconjunctivitis and asthma who were sensitized to ragweed, ragweed SLIT reduced SABA use and nocturnal awakenings during peak ragweed season.

Safety

The rate of serious adverse events associated with SLIT, as reported in RCTs, is estimated at ≤1% (moderate certainty of evidence) with rare cases of anaphylaxis requiring epinephrine. In a real-world study, the incidence of serious adverse events was lower among those receiving SLIT than among those receiving SCIT. Adverse events due to SLIT for inhalant allergens are mainly limited to oral and gastrointestinal symptoms and usually reported to be transient and mild.

Advice

- For adult or adolescent patients with asthma who are sensitized to house dust mite, with persisting asthma symptoms despite low- to medium-dose ICS-containing therapy, consider adding HDM SLIT, but only if FEV1 is >70% predicted (Evidence B).
- For children with asthma sensitized to ragweed, consider adding SLIT before and during the ragweed season, provided FEV1 is ≥80% predicted. There is insufficient evidence to make a recommendation about HDM SLIT in children with asthma.
- As for any treatment, the potential benefits of SLIT for individual patients should include shared decision making and be weighed against the risk of adverse events and the cost for the patient and the health system.
VACCINATIONS

Influenza

Influenza causes significant morbidity and mortality in the general population, and contributes to some acute asthma exacerbations. In 2020, the first year of the COVID-19 pandemic, many countries reported a reduction in influenza-related illness, likely due to the handwashing, masks and social/physical distancing introduced because of the pandemic.454,455

The risk of influenza infection itself can be reduced by annual vaccination. A 2013 systematic review of placebo-controlled randomized controlled trials of influenza vaccination showed no reduction in asthma exacerbations,456 but no such studies had been performed since 2001. A 2017 systematic review and meta-analysis, which included observational studies with a wide range of study designs, suggested that influenza vaccination reduced the risk of asthma exacerbations, but bias could not be excluded for most of the studies.457 There is no evidence for an increase in asthma exacerbations after influenza vaccination compared with placebo.457 A systematic review of studies in individuals aged 2–49 years with mild–moderate asthma found no significant safety concerns or increased risk for asthma-related outcomes after influenza vaccination with live attenuated virus.458

Respiratory syncytial virus

Respiratory syncytial virus (RSV) infection causes lower respiratory tract disease in infants, including bronchiolitis and pneumonia. It also causes lower respiratory tract infections in older children and adults, and may exacerbate asthma. Children and the elderly are more likely to experience severe disease with RSV infection. RSV vaccines prevent RSV-related acute respiratory infection; an adjuvanted RSV-subunit vaccine reduced upper and lower respiratory tract disease in adults 60 years or older, including in those with underlying coexisting conditions such as asthma.459,460

Other vaccines

People with asthma, particularly children and the elderly, are at higher risk of pneumococcal disease.461 Pneumococcal vaccine protects against invasive pneumococcal infection, but asthma alone is not a specific indication for pneumococcal vaccination.462 Pertussis infection may trigger or mimic asthma exacerbations, and pertussis vaccination reduces the risk of severe pertussis-related disease, but there is limited evidence on the efficacy and safety of vaccines in preventing asthma exacerbations in adults (and hence for an asthma-specific recommendation). For information about COVID-19 vaccines, see p.122.

Advice

- Advise patients with moderate to severe asthma to receive an influenza vaccination every year, or at least when vaccination of the general population is advised (Evidence C). Follow local immunization schedules.
- Encourage children, adults and the elderly with asthma to follow their local immunization schedule, including for pneumococcal, pertussis, influenza, RSV and COVID-19 vaccinations. Advice about COVID-19 vaccination is on p.122.
- COVID-19 vaccination and influenza vaccination may be given on the same day.

OTHER THERAPIES

Bronchial thermoplasty

Bronchial thermoplasty is a potential treatment option at Step 5 in some countries for adult patients whose asthma remains uncontrolled despite optimized therapeutic regimens and referral to an asthma specialty center (Evidence B). Bronchial thermoplasty involves treatment of the airways during three separate bronchoscopies with a localized radiofrequency pulse.150 The treatment is associated with a large placebo effect.150 In patients taking high-dose ICS-LABA, bronchial thermoplasty was associated with an increase in asthma exacerbations during the 3 month treatment period, and a subsequent decrease in exacerbations, but no beneficial effect on lung function or asthma symptoms compared with sham-controlled patients.150 Extended follow-up of some treated patients reported a sustained reduction in
exacerbations compared with pre-treatment.463 However, there is a need for longer-term follow up of larger cohorts comparing effectiveness and safety, including for lung function, in both active and sham-treated patients.

\textit{Advice}

- For adult patients whose asthma remains uncontrolled despite optimization of asthma therapy and referral to a severe asthma specialty center, and who do not have access to biologic therapy or are not eligible for it, bronchial thermoplasty is a potential treatment option at Step 5 in some countries (Evidence B).
- Caution should be used in selecting patients for this procedure. The number of studies is small, people with chronic sinus disease, frequent chest infections or FEV\textsubscript{1} <60% predicted were excluded from the pivotal sham-controlled study, and patients did not have their asthma treatment optimized before bronchial thermoplasty was performed.
- Bronchial thermoplasty should be performed in adults with severe asthma only in the context of an independent Institutional Review Board-approved systematic registry or a clinical study, so that further evidence about effectiveness and safety of the procedure can be accumulated.175

\textbf{Vitamin D}

Several cross-sectional studies have shown that low serum levels of Vitamin D are linked to impaired lung function, higher exacerbation frequency and reduced corticosteroid response.464 Vitamin D supplementation may reduce the rate of asthma exacerbation requiring treatment with systemic corticosteroids or may improve symptom control in asthma patients with baseline 25(OH)D of less than approximately 25–30 nmol/L.465,466 There is no good-quality evidence that Vitamin D supplementation leads to improvement in asthma control or reduction in exacerbations, particularly in preschool children and people with severe asthma.467
5. Guided asthma self-management education and skills training

KEY POINTS

As with other chronic diseases, people with asthma need education and skills training to manage it well. This is most effectively achieved through a partnership between the patient/carer and their healthcare providers. The essential components for this include:

- Choosing the most appropriate inhaler for the patient’s asthma treatment: consider available devices, cost, the ability of the patient to use the inhaler after training, environmental impact, and patient satisfaction
- Skills training to use inhaler devices effectively
- Encouraging adherence with medications, appointments and other advice, within an agreed management strategy
- Asthma information
- Training in guided self-management, with self-monitoring of symptoms or peak expiratory flow (PEF), a written asthma action plan to show how to recognize and respond to worsening asthma, and regular review by a healthcare provider or trained healthcare worker.

In developing, customizing and evaluating self-management interventions for different cultures, sociocultural factors should be considered.468

SKILLS TRAINING FOR EFFECTIVE USE OF INHALER DEVICES

Delivery of respiratory medications by inhalation achieves a high concentration in the airways, more rapid onset of action, and fewer systemic adverse effects than systemic delivery. However, using an inhaler is a skill that must be learnt and maintained in order for the medication to be delivered effectively.

Poor inhaler technique leads to poor asthma control, increased risk of exacerbations and increased adverse effects.91 Most patients (up to 70–80%) do not use their inhaler correctly. Unfortunately, many healthcare providers are unable to correctly demonstrate how to use the inhalers they prescribe.469 Most people with incorrect technique are unaware that they have a problem. There is no ‘perfect’ inhaler – patients can have problems using any inhaler device. The several factors that should be considered in the choice of inhaler device for an individual patient are described below and in Box 5-1 (p.109).

Strategies for ensuring effective use of inhaler devices are summarized in Box 5-2 (p.110).470 These principles apply to all types of inhaler devices. For patients prescribed pressurized metered-dose inhalers (pMDIs), use of a spacer improves delivery of the medicine to the lungs. For inhaled corticosteroids (ICS) spacers also reduce the potential for local side-effects such as dysphonia and oral candidiasis.471 With ICS, the risk of candidiasis can also be reduced by rinsing and spitting out after use.

Checking and correcting inhaler technique using a standardized checklist takes only 2–3 minutes and leads to improved asthma control in adults472-473 and older children478 (Evidence A). A physical demonstration is essential to improve inhaler technique.474 This is easiest if the healthcare provider has placebo inhalers and a spacer. After training, inhaler technique deteriorates with time, so checking and re-training must be repeated regularly. This is particularly important for patients with poor symptom control or a history of exacerbations. Attaching a pictogram475476 or a list of inhaler technique steps477 to the inhaler substantially increases the retention of correct technique at follow-up. Pharmacists, nurses and trained lay health workers can provide highly effective inhaler skills training.478-480
SHARED DECISION-MAKING FOR CHOICE OF INHALER DEVICE

Globally, multiple different devices are available for delivery of inhaled medication, including pMDIs, dry-powder inhalers (DPIs), mist inhalers and nebulizers, although the choice of inhaler device for each medication class in any country is often limited. Reducing the risk of severe exacerbations and asthma deaths is a global priority that is driving initiatives to increase access to ICS-containing inhalers for people with asthma worldwide (see p.123) and, when these inhalers are available, to ensure that patients/carers are trained in how to use them correctly.

There is also increasing interest in the potential to reduce the impact of asthma and its care (routine and urgent) on the environment, including from the manufacture and potential recycling of inhaler devices, and from the propellants in pMDIs, which are the inhalers most commonly used worldwide.481-483

For all age-groups, selecting the right inhaler for the individual patient is crucial to asthma care, not only to reduce patients’ symptom burden, but also to reduce the need for emergency health care and hospitalization, which have even greater environmental impacts than use of pMDIs.484,485

Box 5-1. Shared decision-making between health professional and patient about choice of inhalers

See list of abbreviations (p.11).
Box 5-2. Choice and effective use of inhaler devices

CHOOSE

- Choose the most appropriate inhaler device for the patient before prescribing. Consider the preferred medication (Box 4-6, p.77 and Box 4-12, p.96), available devices, patient skills, environmental impact and cost (see Box 5-1, p.109).
- If different options are available, encourage the patient to participate in the choice.
- For pMDIs, use of a spacer improves delivery and (with ICS) reduces the potential for side-effects.
- Ensure that there are no physical barriers, e.g., arthritis, that limit use of the inhaler.
- Avoid use of multiple different inhaler types where possible, to avoid confusion.

CHECK

- Check inhaler technique at every opportunity.
- Ask the patient to show you how they use their inhaler (don't just ask if they know how to use it).
- Identify any errors using a device-specific checklist.

CORRECT

- Show the patient how to use the device correctly with a physical demonstration, e.g., using a placebo inhaler.
- Check technique again, paying attention to problematic steps. You may need to repeat this process 2–3 times within the same session for the patient to master the correct technique.472
- Consider an alternative device only if the patient cannot use the inhaler correctly after several repeats of training.
- Re-check inhaler technique frequently. After initial training, errors often recur within 4–6 weeks.486

CONFIRM

- Clinicians should be able to demonstrate correct technique for each of the inhalers they prescribe.
- Pharmacists and nurses can provide highly effective inhaler skills training.478,479

See list of abbreviations (p.11).

Choosing the medication, inhaler and device

Several factors must be considered in shared decision-making about the choice of inhaler device for the individual patient (Box 5-1, p.109), starting with the choice of the medication itself:

- **Which medication class(es) or individual medication(s) does the patient need to relieve and control symptoms and to prevent asthma exacerbations?** The approach in GINA Track 1 (Box 4-3, p.74) is preferred, because the use of ICS-formoterol as an anti-inflammatory reliever reduces the risk of severe exacerbations and urgent healthcare utilization compared with using a short-acting beta2 agonist (SABA) reliever. The Track 1 approach also avoids the risks associated with SABA over-use, and allows simple adjustment across treatment steps with a single medication for both symptom relief and delivery of ICS-containing treatment. Most studies of maintenance-and-reliever therapy (MART) with ICS-formoterol, and all studies of as-needed-only ICS-formoterol have used a DPI.

- **Which inhaler devices are available to the patient for these medications?** The choice of device for any particular medication class in each country is often limited. Consider local availability, access, and cost to the patient. Where more than one medication is needed, a single (combination) inhaler is preferable to multiple inhalers. Also consider the patient’s age, since DPIs are not suitable for most children aged ≤5 years and some elderly patients; pMDIs with spacers remain essential for such patients.

- **Can the patient use the available device(s) correctly after training?** This may be determined by factors including physical dexterity, coordination, inspiratory flow, and cognitive status. Different inhaler types require different inhalation
techniques, so it is preferable to avoid prescribing a pMDI and DPI for the same patient. Incorrect inhaler technique increases risk of severe asthma exacerbations.

- **What are the environmental implications of the available inhaler(s)?** This has become an important part of inhaler selection, with particular consideration of carbon emissions due to the propellants in pMDIs, but also of environmental effects of inhaler manufacture and potential recycling. However, clinicians need to be aware of the potential to place the additional burden of ‘green guilt’ on patients, as this could reduce adherence and increase the risk of exacerbations.

- **Is the patient satisfied with the medication and inhaler?** The best inhaler for each patient is likely to be the one that they prefer and can use correctly, as this promotes adherence and reduces risk of exacerbations and adverse effects.

In follow-up, review symptom control, asthma exacerbations and adverse events, and check the patient’s ability to use their inhaler(s) correctly, ideally at each visit.

ADHERENCE WITH MEDICATION AND WITH OTHER ADVICE

Identifying poor adherence

Poor adherence is defined as the failure of treatment to be taken as agreed upon by the patient and the healthcare provider. There is increasing awareness of the importance of poor adherence in chronic diseases, and of the potential to develop interventions to improve adherence. Approximately 50% of adults and children on long-term therapy for asthma fail to take medications as directed at least part of the time.

In clinical practice, poor adherence may be identified by an empathic question that acknowledges the likelihood of incomplete adherence and encourages an open discussion. See Box 5-3 (p.112) for examples. Checking the date of the last prescription or the date on the inhaler may assist in identifying poor adherence. In some health systems, pharmacists can assist in identifying poorly adherent patients by monitoring dispensing records. Electronic inhaler monitoring has also been used in clinical practice to identify poor adherence in patients with difficult-to-treat asthma.

In clinical studies assessing factors contributing to poor adherence, methods of measuring adherence include using short adherence behavior questionnaires, analysis of dispensing records, dose or pill counting, electronic inhaler monitoring, and drug assay (e.g., for prednisolone).

Factors contributing to poor adherence

To understand the reasons behind patients’ medication-taking behavior, it is important to elicit their beliefs and concerns about asthma and asthma medications. Both intentional and unintentional factors contribute to poor adherence (Box 5-3, p.112). Issues of ethnicity, health literacy, and numeracy are often overlooked. Patients may be concerned about known side-effects or about perceived harm.
Box 5-3. Poor adherence with prescribed maintenance treatment in asthma

<table>
<thead>
<tr>
<th>Factors contributing to poor adherence</th>
<th>How to identify poor adherence in clinical practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medication/regimen factors</td>
<td>For patients prescribed maintenance treatment, ask an empathic question</td>
</tr>
<tr>
<td>Difficulties using inhaler device (e.g., arthritis)</td>
<td>Acknowledge the likelihood of incomplete adherence and encourage an open non-judgmental discussion. Examples are:</td>
</tr>
<tr>
<td>Burdensome regimen (e.g., several times per day)</td>
<td>‘Many patients don’t use their inhaler as prescribed. In the last 4 weeks, how many days a week have you been taking it – not at all, 1, 2, 3 or more days a week?’</td>
</tr>
<tr>
<td>Multiple different inhalers</td>
<td>‘Do you find it easier to remember your inhaler in the morning or the evening?’</td>
</tr>
<tr>
<td>Unintentional poor adherence</td>
<td>Check medication usage:</td>
</tr>
<tr>
<td>Misunderstanding about instructions</td>
<td>• Check the date of the last prescription.</td>
</tr>
<tr>
<td>Forgetfulness</td>
<td>• Check the date and dose counter on the inhaler.</td>
</tr>
<tr>
<td>Absence of a daily routine</td>
<td>• In some health systems, prescribing and dispensing frequency can be monitored electronically by clinicians and/or pharmacists.</td>
</tr>
<tr>
<td>Cost</td>
<td>• See review articles for more detail.</td>
</tr>
<tr>
<td>Intentional poor adherence</td>
<td></td>
</tr>
<tr>
<td>Perception that treatment is not necessary</td>
<td></td>
</tr>
<tr>
<td>Denial or anger about asthma or its treatment</td>
<td></td>
</tr>
<tr>
<td>Inappropriate expectations</td>
<td></td>
</tr>
<tr>
<td>Concerns about side-effects (real or perceived)</td>
<td></td>
</tr>
<tr>
<td>Dissatisfaction with healthcare providers</td>
<td></td>
</tr>
<tr>
<td>Stigmatization</td>
<td></td>
</tr>
<tr>
<td>Cultural or religious issues</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td></td>
</tr>
</tbody>
</table>

Examples of successful adherence interventions

- Shared decision-making for medication/dose choice
- Inhaler reminders, either proactively or for missed doses
- Prescribing low-dose ICS once-daily versus twice-daily
- Home visits for a comprehensive asthma program by an asthma nurse

See list of abbreviations (p.11).

Interventions that improve adherence in asthma

Few adherence interventions have been studied comprehensively in asthma. Some examples of successful interventions have been published:

- Shared decision-making for medication/dose choice improved adherence and asthma outcomes.
- Electronic inhaler reminders, either proactively or for missed doses, improved adherence and possibly reduced exacerbations and oral corticosteroid use.
- In a difficult inner-city environment, home visits for a comprehensive asthma program by an asthma nurse led to improved adherence and reduced prednisone courses over the following several months.
- Providing adherence information to clinicians did not improve ICS use among patients with asthma unless clinicians chose to view the details of their patients’ medication use.
- In a health maintenance organization, an automated voice recognition program with messages triggered when refills were due or overdue led to improved ICS adherence relative to usual care, but no difference in urgent care visits.
- In one study, directly observed administration of maintenance asthma treatment at school, combined with telemedicine oversight, was associated with more symptom-free days and fewer urgent visits than usual care.
Digital interventions for adherence

A 2022 Cochrane review found that a variety of digital intervention strategies improved adherence to maintenance controller medications, especially in those with poor adherence, reduced exacerbations, and improved asthma control, in studies of up to 2 years’ duration in adults and children.502 Electronic monitoring of maintenance inhaler use, and text messages sent to phones appear to be effective. No harms associated with these technologies were reported. The effects of digital interventions on quality of life, lung function and unscheduled healthcare utilization are unclear.

Improving adherence to maintenance ICS-containing medications may not necessarily translate to improved clinical outcomes.506 Further studies are needed of adherence strategies that are feasible for implementation in primary care.

ASTHMA INFORMATION

While education is relevant to asthma patients of all ages, the information and skills training required by each person may vary, as will their ability or willingness to take responsibility. All individuals will require certain core information and skills, but most education must be personalized and provided over several sessions or stages.

For young children, the focus of asthma education will be on the parent/caregiver, but young children can be taught simple asthma management skills. Adolescents may have unique difficulties with adherence, and peer support group education may help in addition to education provided by the healthcare provider.507 These are complex interventions, and there have been few studies. Regional issues and the adolescent’s developmental stage may affect the outcomes of such programs.508

The key features and components of an asthma education program are provided in Box 5-4. Information alone improves knowledge but does not improve asthma outcomes.509 Social and psychological support may also be required to maintain positive behavioral change, and skills are required for effective medication delivery. At the initial consultation, verbal information should be supplemented with written or pictorial510,511 information about asthma and its treatment. Patients and their families should be encouraged to make a note of any questions about their asthma or its treatment, and should be given time to address these.

Asthma education and training, for both adults and children, can be delivered effectively by a range of healthcare providers including pharmacists and nurses (Evidence A).478,479,512,513 Trained lay health workers (also known as community health workers) can deliver appropriately defined aspects of respiratory care such as asthma self-management education. Asthma education by trained lay health workers has been found to improve patient outcomes and healthcare utilization compared with usual care,480,514 and to a similar extent as nurse-led education in primary care (Evidence B).515 These findings suggest the need for additional studies to assess applicability in other settings and populations.

Box 5-4. Asthma information

| Goal: To provide the person with asthma, their family and other carers with suitable information and training to manage their asthma in partnership with their healthcare providers |
|---|---|
| **Approach** | **Topics to include** |
| Focus on the development of the partnership. | Asthma diagnosis |
| Accept that this is a continuing process. | Rationale for treatment, and differences between relievers and maintenance treatments (if prescribed) |
| Share information. | Potential side-effects of medications |
| Adapt the approach to the patient’s level of health literacy (Box 3-1, p.49). | Prevention of symptoms and flare-ups: importance of anti-inflammatory treatment |
| Fully discuss expectations, fears and concerns. | How to recognize worsening asthma and what actions to take; how and when to seek medical attention |
| Develop shared goals. | Management of comorbidities |
Guided self-management may involve varying degrees of independence, ranging broadly from patient-directed self-management to doctor-directed self-management. With patient-directed self-management patients make changes in accordance with a prior written action plan without needing to first contact their healthcare provider. With doctor-directed self-management, patients still have a written action plan, but refer most major treatment decisions to their physician at the time of a planned or unplanned consultation.

The essential components of effective guided asthma self-management education are:

- Self-monitoring of symptoms and/or PEF
- A written asthma action plan to show how to recognize and respond to worsening asthma
- Regular review of asthma control, treatment and skills by a healthcare provider.

Self-management education that includes these components dramatically reduces asthma morbidity, both in adults (Evidence A) and children (Evidence A). Benefits include reduction of one-third to two-thirds in asthma-related hospitalizations, emergency department visits and unscheduled doctor or clinic visits, missed work/school days, and nocturnal wakening. It has been estimated that the implementation of a self-management program in 20 patients prevents one hospitalization, and successful completion of such a program by 8 patients prevents one emergency department visit. Less intensive interventions that involve self-management education, but not a written action plan, are less effective, and information alone is ineffective. A systematic meta-review of 270 RCTs on supported self-management for asthma confirmed that it reduces unscheduled health care use, improves asthma control, is applicable to a wide range of target groups and clinical settings, and does not increase healthcare costs (Evidence A).

Self-monitoring of symptoms and/or peak expiratory flow (PEF)

Patients/caregivers should be trained to keep track of symptoms (with or without a diary), and notice and take action, if necessary, when symptoms start to worsen. PEF monitoring may sometimes be useful:

- In short-term monitoring
 - After an exacerbation, to monitor recovery
 - After a change in treatment, to help in assessing whether the patient has responded
 - When symptoms appear excessive (for objective evidence of degree of lung function impairment)
 - To assist in identification of occupational or domestic triggers for worsening asthma control

- In long-term monitoring
 - For earlier detection of exacerbations, mainly in patients with poor perception of airflow limitation
 - For patients with a history of sudden severe exacerbations
 - For patients who have difficult-to-control or severe asthma.

For patients carrying out PEF monitoring, use of a laterally compressed PEF chart (showing 2 months on a landscape format page) allows more accurate identification of worsening asthma than other charts. One such chart is available for download from www.woolcock.org.au/resources/asthma-peak-flow-chart.

There is increasing interest in internet or phone-based monitoring of asthma. Based on existing studies, the main benefit is likely to be for more severe asthma (Evidence B).
Written asthma action plans

Personal written asthma action plans show patients how to make short-term changes to their treatment in response to changes in their symptoms and/or PEF. They also describe how and when to access medical care.520,521 ‘Written’ action plans include printed, digital or pictorial plans (i.e., the patient is given a record of the instructions).

The benefits of self-management education for asthma morbidity are greater in adults when the action plans include both a step up in ICS and the addition of oral corticosteroids (OCS) and, for PEF-based plans, when they are based on personal best rather than percent predicted PEF (Evidence A).521

The efficacy of self-management education is similar regardless of whether patients self-adjust their medications according to an individual written plan or whether the medication adjustments are made by a doctor (Evidence A).518 Thus, patients who are unable to undertake guided self-management can still achieve benefit from a structured program of regular medical review.

Action plans for patients using SABA as their reliever

Examples of written asthma action plan templates for asthma treatment with a SABA reliever, including for adult and pediatric patients with low literacy, can be found on several websites (e.g., Asthma UK, www.asthma.org.uk; Asthma Society of Canada, www.asthma.ca; Family Physician Airways Group of Canada, www.fpagc.com; National Asthma Council Australia, www.nationalasthma.org.au) and in research publications.522,523

Action plan for patients using as-needed ICS-formoterol as their reliever

A different type of action plan is needed for patients using as-needed ICS-formoterol as their reliever in GINA Track 1, because the initial 'action' when asthma worsens is for the patient to increase their as-needed doses of ICS-formoterol, rather than taking a SABA and/or increasing their maintenance treatment. An example of such a customized template can be found in a review article about practical use of maintenance-and reliever-therapy (MART).313 A similar action plan template can be used for patients using as-needed-only ICS-formoterol.314

Healthcare providers should become familiar with action plans that are relevant to their local healthcare system, treatment options, and cultural and literacy context. Details of the specific treatment adjustments that can be recommended for written asthma action plans are described in the next chapter (Box 9-2, p.162).
REGULAR REVIEW BY A HEALTHCARE PROVIDER OR TRAINED HEALTHCARE WORKER

The third component of effective asthma self-management education is regular review by a healthcare provider or trained healthcare worker. Follow-up consultations should take place at regular intervals. Regular review should include the following:

- **Ask the patient if they have any questions or concerns**
 - Discuss issues, and provide additional educational messages as necessary.
 - If available, refer the patient to someone trained in asthma education.

- **Assess asthma control, risk factors for exacerbations, and comorbidities**
 - Review the patient’s level of symptom control and risk factors (Box 2-2, p.37).
 - Ask about flare-ups to identify contributory factors and whether the patient’s response was appropriate (e.g., was an action plan used?).
 - Review the patient’s symptom or PEF diary, if they keep one.
 - Assess comorbidities.

- **Assess treatment issues**
 - Watch the patient use their inhaler, and correct and re-check technique if necessary (Box 5-2, p.110).
 - Assess medication adherence and ask about adherence barriers (Box 5-3, p.112).
 - Ask about adherence with other interventions (e.g., smoking cessation).
 - Review the asthma action plan and update it if level of asthma control or treatment have changed. 524

A single-page prompt to clinicians has been shown to improve the provision of preventive care to children with asthma during office visits. 525 Follow-up by telehealthcare is unlikely to benefit patients with asthma that is well controlled at a low treatment step, but may be of benefit in those with severe disease at risk of hospital admission. 519

SCHOOL-BASED PROGRAMS FOR CHILDREN

A systematic review found that school-based studies (most conducted in the US and Canada) that included self-management skills for children aged 5–18 years was associated with a 30% decrease in emergency department visits, and a significant decrease in hospitalizations and in days of reduced activity. 526
6. Managing asthma with multimorbidity and in specific populations

KEY POINTS

Multimorbidity is common in patients with chronic diseases such as asthma. It is important to identify and manage multimorbidity, as it contributes to impaired quality of life, increased healthcare utilization, and adverse effects of medications. In addition, comorbidities such as rhinosinusitis, obesity and gastro-esophageal reflux disease (GERD) may contribute to respiratory symptoms, and some contribute to poor asthma control.

For patients with dyspnea or wheezing on exertion:

- Distinguish between exercise-induced bronchoconstriction (EIB) and symptoms that result from obesity or a lack of fitness or are the result of alternative conditions such as inducible laryngeal obstruction.
- Provide advice about preventing and managing EIB.

All adolescents and adults with asthma should receive inhaled corticosteroid (ICS)-containing treatment to reduce their risk of severe exacerbations. It should be taken every day or, as an alternative in mild asthma, by as-needed ICS-formoterol for symptom relief.

Refer patients with difficult-to-treat or severe asthma to a specialist or severe asthma service, after addressing common problems such as incorrect diagnosis, incorrect inhaler technique, ongoing environmental exposures, and poor adherence (see Section 8, p.139).

Women with asthma who are pregnant or planning pregnancy should be advised not to stop ICS-containing therapy, as exacerbations increase the risk of adverse perinatal outcomes. The advantages of actively treating asthma in pregnancy with ICS-containing therapy markedly outweigh any potential risks of these medications.

MANAGING MULTIMORBIDITY

Multimorbidity is a common problem in patients with chronic diseases such as asthma. It is associated with worse quality of life, increased healthcare utilization and increased adverse effects of treatment. Multimorbidity is particularly common among those with difficult-to-treat or severe asthma. Active management of comorbidities such as rhinosinusitis, obesity and GERD is important, as these conditions may also contribute to respiratory symptom burden and lead to medication interactions. Some comorbidities also contribute to poor asthma control. The advice below covers some of the most common comorbidities of asthma, but is not an exhaustive list.

Obesity

Clinical features

Being overweight or obese is a risk factor for childhood asthma and wheeze, particularly in girls. Asthma is more difficult to control in obese patients. This may be due to a different type of airway inflammation, contributory comorbidities such as obstructive sleep apnea and GERD, mechanical factors, or other as-yet undefined factors. In addition, lack of fitness and reduction in lung volume due to abdominal fat may contribute to dyspnea.

Diagnosis

Document body-mass index (BMI) for all patients with asthma. Because of other potential contributors to dyspnea and wheeze in obese patients, it is important to confirm the diagnosis of asthma with objective measurement of variable expiratory airflow limitation (Box 1-2, p.26). Asthma is more common in obese than non-obese patients, but both overweight and under-diagnosis of asthma occur in obesity. The relationship between biomarkers of Type 2 inflammation is lost in the obese.
Management

As for other patients with asthma, ICS are the mainstay of treatment in obese patients (Evidence B), although their response may be reduced. Weight reduction should be included in the treatment plan for obese patients with asthma (Evidence B). Increased exercise alone appears to be insufficient (Evidence B). Weight loss can improve asthma control, lung function, health status and reduces medication needs in obese patients, but the studies have generally been small, quality of some studies is poor, and the interventions and results have been variable. The most striking results have been observed after bariatric surgery, but even 5–10% weight loss can lead to improved asthma control and quality of life. For patients with comorbid obstructive sleep apnea, one study showed a significant reduction in moderate exacerbations with 6 months of continuous positive airway pressure (CPAP) therapy.

Gastroesophageal reflux disease (GERD)

Clinical features

GERD can cause symptoms such as heartburn and epigastric or chest pain, and is also a common cause of dry cough. Symptoms and/or diagnosis of GERD are more common in people with asthma than in the general population, but this may be in part due to cough being attributed to asthma; in addition, some asthma medications such as beta₂ agonists and theophylline cause relaxation of the lower esophageal sphincter. Asymptomatic gastroesophageal reflux is not a likely cause of poorly controlled asthma.

Diagnosis

In patients with confirmed asthma, GERD should be considered as a possible cause of a dry cough; however, there is no value in screening patients with uncontrolled asthma for GERD (Evidence A). For patients with asthma and symptoms suggestive of reflux, an empirical trial of anti-reflux medication, such as a proton pump inhibitor or motility agent, may be considered, as in the general population. If the symptoms do not resolve, specific investigations such as 24-hour pH monitoring or endoscopy may be considered.

Management

Clinical trials of proton pump inhibitors in patients with confirmed asthma, most of whom had a diagnosis of GERD, showed small benefits for lung function, but no significant benefit for other asthma outcomes. In a study of adult patients with symptomatic asthma but without symptoms of GERD, treatment with high-dose proton pump inhibitors did not reduce asthma symptoms or exacerbations. In general, benefits of proton pump inhibitors in asthma appear to be limited to patients with both symptomatic reflux and night-time respiratory symptoms. Other treatment options include motility agents, lifestyle changes and fundoplication. In summary, symptomatic reflux should be treated, but patients with poorly controlled asthma should not be treated with anti-reflux therapy unless they also have symptomatic reflux (Evidence A). Few data are available for children with asthma symptoms and symptoms of GERD.

Anxiety and depression

Clinical features

Anxiety symptoms and psychiatric disorders, particularly depressive and anxiety disorders, are more prevalent among people with asthma. Psychiatric comorbidity is also associated with worse asthma symptom control and medication adherence, and worse asthma-related quality of life. Anxious and depressive symptoms have been associated with increased asthma-related exacerbations and emergency visits. Panic attacks may be mistaken for asthma.

Diagnosis

Although several tools are available for screening for anxious and depressive symptomatology in primary care, the majority have not been validated in asthma populations. Difficulties in distinguishing anxiety or depression from asthma symptoms may therefore lead to misdiagnosis. It is important to be alert to possible depression and/or anxiety in people with asthma, particularly when there is a previous history of these conditions. Where appropriate, patients should be referred to psychiatrists or evaluated with a disease-specific psychiatric diagnostic tool to identify potential cases of depression and/or anxiety.
Management

There have been few good quality pharmacological and non-pharmacological treatment trials for anxiety or depression in patients with asthma, and results are inconsistent. A Cochrane review of 15 randomized controlled trials of psychological interventions for adults with asthma included cognitive behavior therapy, psychoeducation, relaxation, and biofeedback. Results for anxiety were conflicting, and none of the studies found significant treatment differences for depression. Drug treatments and cognitive behavior therapy have been described as having some potential in patients with asthma; however, current evidence is limited, with a small number of studies and methodological shortcomings.

Food allergy and anaphylaxis

Clinical features

Rarely, food allergy is a trigger for asthma symptoms (<2% of people with asthma). In patients with confirmed food-induced allergic reactions (anaphylaxis), co-existing asthma is a strong risk factor for more severe and even fatal reactions. Food-induced anaphylaxis often presents as life-threatening asthma. An analysis of 63 anaphylaxis-related deaths in the United States noted that almost all had a past history of asthma; peanuts and tree nuts were the foods most commonly responsible. A UK study of 48 anaphylaxis-related deaths found that most were regularly treated for asthma, and that in most of these, asthma was poorly controlled.

Diagnosis

In patients with confirmed food allergy, it is important to assess for asthma. Children with food allergy have a four-fold increased likelihood of having asthma compared with children without food allergy. Refer patients with suspected food allergy or intolerance for specialist allergy assessment. This may include appropriate allergy testing such as skin prick testing and/or blood testing for specific IgE. On occasion, carefully supervised food challenges may be needed.

Management

Patients who have a confirmed food allergy that puts them at risk for anaphylaxis must have an epinephrine auto-injector available at all times, and be trained how to use it. They, and their family, must be educated in appropriate food avoidance strategies, and in the medical notes, they should be flagged as being at high risk. It is especially important to ensure that their asthma is well controlled, they have a written action plan, understand the difference between asthma and anaphylaxis, and are reviewed on a regular basis.

Allergic rhinitis

Clinical features

Evidence clearly supports a link between diseases of the upper and lower airways. Most patients with asthma, either allergic or non-allergic, have concurrent rhinitis, and 10–40% of patients with allergic rhinitis have asthma. Depending on sensitization and exposure, allergic rhinitis may be seasonal (e.g., ragweed or grass pollen), or perennial (e.g., HDM allergens, furred pets in the home), or intermittent (e.g., furred pets at other locations). Rhinitis is defined as irritation and inflammation of the mucous membranes of the nose. Allergic rhinitis may be accompanied by ocular symptoms (conjunctivitis).

Diagnosis

Rhinitis can be classified as either allergic or non-allergic depending on whether allergic sensitization is demonstrated. Variation in symptoms by season or with environmental and/or occupational exposure (e.g., furred pets, house dust mite, molds, pollens) suggests allergic rhinitis. Examination of the upper airway should be arranged for patients with severe asthma.

Management

International evidence-based guidelines recommend intranasal corticosteroids for treatment of allergic rhinitis. In a case-control study, treatment of rhinitis with intranasal corticosteroids was associated with less need for asthma-related hospitalization and emergency department visits, but a meta-analysis found improvement in asthma outcomes only in
patients not also receiving ICS. See p.104 for information about allergen immunotherapy for patients with allergic rhinitis and asthma.

Chronic rhinosinusitis with and without nasal polyps (CRSwNP and CRSsNP)

Rhinosinusitis is defined as inflammation of the nose and paranasal sinuses characterized by more than two symptoms including nasal blockage/obstruction and/or nasal discharge (anterior/posterior nasal drip). Other symptoms may include facial pain/pressure and/or a reduction or loss of smell. Sinusitis rarely occurs in the absence of rhinitis. Rhinosinusitis is defined as acute when symptoms last <12 weeks with complete resolution, and chronic when symptoms occur on most days for at least 12 weeks without complete resolution.

Chronic rhinosinusitis is an inflammatory condition of the paranasal sinuses that encompasses two clinically distinct entities: chronic rhinosinusitis without nasal polyps (CRSsNP) and chronic rhinosinusitis with nasal polyps (CRSwNP). The heterogeneity of chronic rhinosinusitis may explain the wide variation in prevalence rates in the general population, ranging from 1% to 10% without polyps and 4% with polyps. Chronic rhinosinusitis is associated with more severe asthma, especially in patients with nasal polyps.

Diagnosis

Nasendoscopy and/or computed tomography (CT) of the sinuses can identify changes suggestive of chronic rhinosinusitis with or without nasal polyps. In severe asthma, presence of nasal polyps may help with choice of biologic therapy (see Box 8-4, p.144).

Management

Chronic rhinosinusitis, with or without nasal polyps, has a significant impact on patients’ quality of life. Guidelines for the management of chronic rhinosinusitis with or without nasal polyps have been published.

A 2022 systematic review of studies reporting treatment outcomes in patients with both asthma and chronic rhinosinusitis found that medical treatments (including intranasal saline irrigations, intranasal corticosteroids delivered by irrigation, drops (only one small study of each) or sprays, oral antibiotics (small studies with erythromycin), and oral corticosteroids) improved sinonasal-specific quality of life in patients with chronic rhinosinusitis (most commonly with nasal polyps) and comorbid asthma. However, people with chronic rhinosinusitis and asthma may have a lesser response to rhinosinusitis treatments, compared with in people who do not have asthma. There was limited evidence for improvements in lung function and asthma control, and no data on the effect of intranasal corticosteroids on lung function or asthma control.

The systematic review found strong RCT evidence that anti-IL4Rα and anti-IL5/5Rα receptor therapies improve rhinosinusitis, including reducing polyp counts, as well as improving asthma outcomes, in patients with asthma and CRSwNP who have experienced inadequate response to non-biologic therapy. Biologics were less effective in managing chronic sinusitis without polyps in people with asthma. The review found no studies that directly compared biologic therapy with endoscopic sinus surgery in patients with CRSwNP and asthma. There was moderate-to-strong evidence that endoscopic sinus surgery improves sinonasal-specific and asthma-specific quality of life in patients with chronic rhinosinusitis and asthma, and may improve asthma symptom control, but there was insufficient evidence for effects on lung function.

Current evidence supports stepwise treatment to manage chronic rhinosinusitis in people with asthma, beginning with topical nasal saline irrigations and topical nasal steroids as the main treatment. Oral antibiotics can be used as needed after considering the risks and microbial resistance. Oral corticosteroid treatment is effective, but should be minimized due to adverse effects (Box 9-3, p.165). In patients with CRSwNP, omalizumab, mepolizumab, and dupilumab improved subjective and objective assessments including nasal symptoms and polyp size, compared with placebo. Endoscopic sinus surgery can be considered in patients with asthma who have inadequate response to medical therapies for chronic rhinosinusitis, but it does not improve asthma outcomes.
MANAGING ASTHMA DURING THE COVID-19 PANDEMIC

Are people with asthma at higher risk of COVID-19 or severe COVID-19?

People with asthma do not appear to be at increased risk of acquiring COVID-19, and systematic reviews have not shown an increased risk of severe COVID-19 in people with well-controlled mild-to-moderate asthma. Overall, studies to date indicate that people with well-controlled asthma are not at increased risk of COVID-19-related death, and in one meta-analysis, mortality appeared to be lower than in people without asthma. However, the risk of COVID-19 death was increased in people who had recently needed oral corticosteroids (OCS) for their asthma, and in hospitalized patients with severe asthma. Therefore, it is important to continue good asthma management (as described in the GINA Strategy Report), with strategies to maintain good symptom control, reduce the risk of severe exacerbations and minimize the need for OCS. In one study of hospitalized patients aged ≥50 years with COVID-19, mortality was lower among those with asthma who were using ICS than in patients without an underlying respiratory condition.

In 2020 and 2021, many countries recorded a reduction in asthma exacerbations and influenza-related illness. The reasons are not precisely known, but may be due to handwashing, masks and social/physical distancing that reduced the incidence of other respiratory infections, including influenza.

During pandemic conditions, advise patients with asthma to continue taking their prescribed asthma medications, particularly inhaled corticosteroid (ICS)-containing medications, and OCS if prescribed

It is important for patients to continue taking their prescribed asthma medications as usual during the COVID-19 pandemic. This includes ICS-containing medications (alone or in combination with a long-acting beta2 agonist (LABA), and add-on therapy including biologic therapy for severe asthma. Stopping ICS often leads to potentially dangerous worsening of asthma. See Section 4 (p.67) for information about asthma medications and regimens and non-pharmacologic strategies, and Section 5 (p.108) for guided asthma self-management education and skills training.

For a small proportion of patients with severe asthma, long-term OCS may sometimes be needed, and it is very dangerous to stop these suddenly. See Section 8 (p.139) for advice about investigation and management of difficult-to-treat and severe asthma, including addition of biologic therapy for minimizing use of OCS.

Advise patients to discuss with you before stopping any asthma medication.

Make sure that all patients have a written asthma action plan

A written action plan (printed, digital or pictorial) tells the patient how to recognize worsening asthma, how to increase their reliever and maintenance medications, and when to seek medical help. A short course of OCS may be needed during severe asthma flare-ups (exacerbations). See Box 9-2 (p.162) for more information about specific action plan options for increasing reliever medications (or reliever and maintenance medications), depending on the patient’s usual therapeutic regimen.

At present, there is no clear evidence about how to distinguish between worsening asthma due to respiratory viral infections such as rhinovirus and influenza, and COVID-19.

If local risk of COVID-19 is moderate or high, avoid use of nebulizers where possible due to the risk of transmitting infection to other patients/family and to healthcare workers

Nebulizers can transmit respiratory viral particles across distances of at least 1 m. Use of nebulizers for delivering bronchodilator therapy is mainly restricted to management of life-threatening asthma in acute care settings. Instead, to deliver short-acting beta2 agonist for acute asthma in adults and children, use a pressurized metered-dose inhaler and spacer, with a mouthpiece or tightly fitting face mask, if required. Check the manufacturer’s instructions about whether a spacer can be autoclaved. If not (as is the case for many types of spacers), or if in doubt, spacers should be restricted to single patient use. If use of a nebulizer is needed in settings where COVID-19 infection is possible, strict infection control procedures should be followed.
Remind patients not to share inhaler devices or spacers with family members, to avoid transmitting infection.

Avoid spirometry in patients with confirmed/suspected COVID-19

In healthcare facilities, follow local COVID-19 testing recommendations and infection control procedures if spirometry or peak flow measurement is needed. Use of an in-line filter minimizes the risk of transmission during spirometry, but many patients cough after performing spirometry; before performing spirometry, coach the patient to stay on the mouthpiece if they feel the need to cough.

The US Centers for Disease Control and Prevention (CDC) recommendations are found here. If spirometry is not available due to local infection control restrictions, and information about lung function is needed, consider asking patients to monitor lung function at home.

Follow infection control recommendations if any aerosol-generating procedures are needed

Other aerosol-generating procedures include oxygen therapy (including with nasal prongs), sputum induction, manual ventilation, non-invasive ventilation and intubation. CDC recommendations are found here. Follow local health advice about hygiene strategies and use of personal protective equipment, as new information becomes available in your country or region.

The CDC website provides up-to-date information about COVID-19 for health professionals here, and for patients here. The website of the World Health Organization (WHO) provides comprehensive advice for health professionals and health systems about prevention and management of COVID-19 here.

Management of asthma if the patient acquires COVID-19

People with asthma who acquire COVID-19 are not at higher risk of severe COVID-19. However, be aware that those with poorly controlled asthma (e.g., recent need for OCS) are at higher risk of hospitalization for severe disease if they acquire COVID-19. Advise patients to continue taking their usual asthma medications. Patients with severe asthma should continue biologic therapy or OCS, if prescribed.

To reduce the risk of transmitting infection, as above, avoid use of nebulizers where possible (use a pressurized metered-dose inhaler [pMDI] and spacer instead), avoid spirometry, and instruct patients to avoid sharing of inhalers/spacers.

Before prescribing antiviral therapies, consult local prescribing guidelines. Check carefully for potential interactions between asthma therapy and COVID-19 therapy. For example, ritonavir-boosted nirmatrelvir (NMV/r) is a potent CYP3A4 inhibitor. While this is unlikely to cause clinically important corticosteroid-related adverse effects, because of the short duration of anti-COVID-19 treatment, be cautious if considering prescribing NMV/r for patients taking ICS-salmeterol or ICS-vilanterol, as the interaction may increase cardiac toxicity of the LABA. Product information indicates that for patients taking ICS-salmeterol or ICS-vilanterol, concomitant treatment with CYP3A4 inhibitors is not recommended. Some drug interaction websites advise stopping ICS-salmeterol or ICS-vilanterol during NMV/r treatment and for a few days afterwards, but this may increase the risk of an asthma exacerbation. Instead, consider prescribing alternative antiviral therapy (if available) or switching to ICS alone or ICS-formoterol (if available) for the duration of NMV/r therapy and a further 5 days. If switching to a different inhaler, remember to teach correct technique with the new inhaler.

Advise people with asthma to be up to date with COVID-19 vaccines

Many types of COVID-19 vaccines have been studied and are in use. New evidence about the vaccines, including in people with asthma, will emerge over time. In general, allergic reactions to the vaccines are rare. Patients with a history of severe allergic reaction to a COVID-19 vaccine ingredient (e.g., polyethylene glycol for Pfizer/BioNTech or Moderna, or polysorbate 80 for AstraZeneca or J&J/Janssen) should receive a different COVID-19 vaccine. However, people with anaphylaxis to foods, insect venom, or other medications can safely receive COVID-19 vaccines. More details from the US Advisory Committee on Immunization Practices (ACIP) are here. As always, patients should speak to their healthcare provider if they have concerns. Follow local advice about monitoring patients after COVID-19 vaccination.

Usual vaccine precautions apply. For example, ask if the patient has a history of allergy to any components of the vaccine, and if the patient has a fever or another infection, delay vaccination until they are well.
For people with severe asthma, GINA suggests that, if possible, the first dose of biologic therapy and COVID-19 vaccine should not be given on the same day, to allow adverse effects of either to be more easily distinguished.

Remind people with asthma to have an annual influenza vaccination (p.106). CDC (advice here) now advises that influenza vaccine and COVID-19 vaccine can be given on the same day.

Current advice from the CDC is that where there is substantial transmission of COVID-19, people will be better protected, even if they are fully vaccinated, if they wear a mask in indoor public settings. Further details are here.

Additional advice about management of asthma in the context of COVID-19 will be posted on the GINA website (www.ginasthma.org) as it becomes available.

MANAGING ASTHMA IN SPECIFIC POPULATIONS OR SETTINGS

This section includes brief advice about managing asthma in some of the specific populations or settings in which the usual treatment approach may need to be modified. See also How to make the diagnosis of asthma in other contexts (p.32).

Low- and middle-income countries

Clinical features

In 2019, 96% of asthma deaths and 84% of disability-adjusted life years (DALYs) were in low- and middle-income countries (LMICs). Symptoms of asthma are similar worldwide, but patient language may differ, and comorbidities may vary depending on environmental exposures such as smoking and biomass fuel exposure and incidence of chronic respiratory infections from tuberculosis and HIV/AIDS.

Management

The fundamental principles and aims of asthma treatment are the same in LMICs as in high-income countries, but common barriers to effective long-term asthma care include the lack of availability and affordability of inhaled medicines, and prioritization of acute care over chronic care by healthcare systems. Recommendations by WHO and the International Union Against Tuberculosis and Lung Disease form the basis of treatments offered in many LMICs. The WHO Model List of Essential Medicines includes ICS, combination ICS-formoterol, and bronchodilators, and the WHO Model List of Essential Medicines for Children includes ICS. Spacers are included in the WHO list of essential technology, but are rarely available due to obstacles to their manufacture or purchase, practical issues of cleaning, and inconvenience for ambulatory use. Effective spacers can be made at no cost from plastic drink bottles.

Medicines selected as ‘essential’ are not necessarily the most effective or convenient, particularly for patients with more severe disease, and a limited choice does not allow for consideration of patient preferences and likelihood of adherence. However, ICS-containing medications, when provided for large populations, have achieved impressive reductions in mortality and morbidity, including in LMICs. In Brazil, government policy ensuring nationwide easy access to ICS, at no cost to patients, was associated with a 34% reduction in hospitalizations for asthma. Prescribing ICS-formoterol as the symptom reliever, with (GINA Steps 3–5) or without (Steps 1–2) maintenance ICS-formoterol, provides the safest and most effective asthma treatment for adolescents and adults, and avoids the behavioral consequences of starting treatment with SABA alone.

Inclusion of essential asthma medicines in formularies and guidelines does not assure sustained and equitable supply to patients. The supply of medicines in many LMICs tends to be sporadic for a wide variety of reasons, sometimes determined by the ability of governments to pay for supplies, issues relating to procurement, poor administration and record keeping, and problems in the supply chain, particularly to remote dispensaries.

Availability of asthma medicines varies widely between LMICs, with some having only oral bronchodilators (salbutamol and theophylline tablets/solutions), supplemented from time to time with oral corticosteroids. Oral bronchodilators have a slow onset of action and more adverse effects than inhaled SABA, and even occasional courses of OCS are associated
with a significant risk of short-term adverse effects such as pneumonia and sepsis.571 and, in adults, with long-term adverse effects including osteoporosis and fragility fractures, cataract and diabetes.225 The largest (52 countries) survey of the accessibility and affordability of inhaled asthma medicines, conducted in 2011, reported that salbutamol was available in only half of public hospitals; ICS was available in fewer than one in five public pharmacies and not at all in 14 countries.872

Obtaining asthma medicines often represents a catastrophic household expense. A recent systematic review of published data on the availability, cost and affordability of essential medicines for asthma and COPD in LMICs found these to be largely unavailable and unaffordable particularly for ICS and combination ICS-LABA.573 This means that the essential cornerstone of treatment that achieves substantial reductions in morbidity and mortality is out of reach for the great majority of the world’s children, adolescents and adults living with asthma.

It is not acceptable in 2023 for clinicians to have to manage asthma with SABAs and oral corticosteroids instead of preventive ICS-containing treatments. The research community must develop and evaluate approaches designed to obviate barriers to care in resource-constrained settings. A World Health Assembly Resolution on equitable access to affordable care, including inhaled medicines, for children, adolescents and adults with asthma, wherever they live in the world, would be a valuable step forward – as was achieved in 2021 for the supply of insulin for diabetes.574 GINA strongly supports this initiative.3

In the meantime, in general, Track 2 treatment, although less effective in reducing asthma exacerbations, may be considered preferable in settings where current availability or affordability constrains the ability to implement Track 1 treatment. The ‘other controller options’ in Box 4-6 (p.77), though potentially less costly, may be considerably less effective (e.g., leukotriene receptor antagonists [LTRAs]) or more harmful (e.g., maintenance OCS), or not well supported by evidence especially in the low-resource setting (e.g., use of a low-dose ICS inhaler whenever a SABA is taken for symptom relief). Of these three other controller options, the third would be closest to the preferred recommendations in Tracks 1 and 2, as it would ensure that an ICS was provided, at least during symptomatic periods.22

Adolescents

Clinical features

Care of teenagers with asthma should take into account the rapid physical, emotional, cognitive and social changes that occur during adolescence. Asthma control may improve or worsen, although remission of asthma is seen more commonly in males than females.575 Exploratory and risk-taking behaviors such as smoking occur at a higher rate in adolescents with chronic diseases than in healthy adolescents.

In a large meta-analysis of adherence with ICS by adolescents and young adults,190 overall adherence was 28%, and slightly higher in those <18 years (36%). However, pharmacy refill data provided lower estimates of adherence than self-report measures. Predictors of adherence included personality, illness perceptions, and treatment beliefs.

Management

General principles for managing chronic disease in adolescents have been published by WHO.576 Adolescents and their parent/caregivers should be encouraged in the transition towards asthma self-management by the adolescent.927 This may involve the transition from a pediatric to an adult healthcare facility. Transitioning should not be based on chronological age but on developmental stage and readiness, using formal tools to assess readiness at around 11–13 years (ideal timing/age not based on evidence). Clinicians should aim to increase self-management, focusing consultations on areas in which the young person is not confident. Consider using technology to assist with adherence and guide young people to web-based apps and tools to improve knowledge of asthma. Awareness of asthma should be promoted to communities and peers.

During consultations, the adolescent should be seen separately from the parent/caregiver so that sensitive issues such as smoking, adherence and mental health can be discussed privately, and confidentiality agreed. Information and self-management strategies should be tailored to the patient’s stage of psychosocial development and desire for autonomy; adolescents are often focused on short-term rather than long-term outcomes. An empathic approach should be used to
identify beliefs and behaviors that may be barriers to optimal treatment; for example, adolescents may be concerned about the impact of treatment on their physical or sexual capabilities.

Medication regimens should be tailored to the adolescent's needs and lifestyle, and reviews arranged regularly so that the medication regimen can be adjusted for changing needs. Information about local youth-friendly resources and support services should be provided, where available. In adolescents with mild asthma, use of as-needed low-dose ICS formoterol reduced risk of severe exacerbations compared with SABA alone, and without the need for daily treatment. Change in height from baseline in younger adolescents was significantly greater with as-needed ICS-formoterol than with daily low-dose ICS plus as-needed SABA.

Exercise-induced bronchoconstriction (EIB)

Clinical features

Physical activity is an important stimulus for asthma symptoms for many patients, with symptoms and bronchoconstriction typically worsening after cessation of exercise. However, shortness of breath or wheezing during exercise may also relate to obesity or a lack of fitness, or to comorbid or alternative conditions such as inducible laryngeal obstruction.

Management

Regular treatment with ICS significantly reduces EIB (Evidence A). Training and sufficient warm-up reduce the incidence and severity of EIB (Evidence A). Taking SABAs, LABAs or chromones prior to exercise prevents EIB (Evidence A), but tolerance to the protective effects of SABAs and LABAs against EIB develops with regular (more than once-daily) use (Evidence A). However, in a 6-week study in patients with mild asthma, low-dose budesonide-formoterol, taken as needed for relief of symptoms and before exercise, was non-inferior for reducing EIB to regular daily ICS with as-needed SABA. More studies are needed, but this suggests that patients with mild asthma who are prescribed as-needed low-dose ICS-formoterol to prevent exacerbations and control symptoms can use the same medication prior to exercise, if needed, and do not need to be prescribed a SABA for pre-exercise use (Evidence B). Chromone pMDIs have been discontinued globally.

Breakthrough EIB often indicates poorly controlled asthma, and stepping up ICS-containing treatment (after checking inhaler technique and adherence) generally results in the reduction of exercise-related symptoms.

Athletes

Clinical features

Athletes, particularly those competing at a high level, have an increased prevalence of various respiratory conditions compared to non-athletes. They experience a higher prevalence of asthma, EIB, allergic or non-allergic rhinitis, chronic cough, inducible laryngeal obstruction, and recurrent respiratory infections. Airway hyperresponsiveness is common in elite athletes, often without reported symptoms. Asthma in elite athletes is commonly characterized by less correlation between symptoms and pulmonary function, higher lung volumes and expiratory flows, less eosinophilic airway inflammation, more difficulty in controlling symptoms, and some improvement in airway dysfunction after cessation of training.

Management

Preventive measures to avoid high exposure to air pollutants, allergens (if sensitized) and chlorine levels in pools, particularly during training periods, should be discussed with the athlete. They should avoid training in extreme cold or pollution (Evidence C), and the effects of any therapeutic trials of asthma medications should be documented. Adequate anti-inflammatory therapy, especially ICS, is advised; minimization of use of beta2 agonists will help to avoid the development of tolerance. Information on treatment of exercise-induced asthma in athletes can be found in a Joint Task Force Report prepared by the European Respiratory Society, the European Academy of Allergy and Clinical Immunology, and Global Allergy and Asthma European Network (GA(2))LEN) and on the World Anti-Doping Agency website (www.wada-ama.org).
Pregnancy

Clinical features

Asthma control often changes during pregnancy; in approximately one-third of women asthma symptoms worsen, in one-third they improve, and in the remaining one-third they remain unchanged. Exacerbations are common in pregnancy, particularly in the second trimester. Exacerbations and poor asthma control during pregnancy may be due to mechanical or hormonal changes, or to cessation or reduction of asthma medications due to concerns by the mother and/or the healthcare provider. Pregnant women appear to be particularly susceptible to the effects of viral respiratory infections, including influenza.

Exacerbations and poor symptom control are associated with worse outcomes for both the baby (pre-term delivery, low birth weight, increased perinatal mortality) and the mother (pre-eclampsia). Risk factors for asthma exacerbations during pregnancy include severe asthma, multiparity, black ethnicity, depression and anxiety, current smoking, age >35 years and obesity. Addressing these risk factors may not only reduce the risk of exacerbations, but also the risk of adverse perinatal outcomes. If asthma is well controlled throughout pregnancy there is little or no increased risk of adverse maternal or fetal complications.

Management

Although there is a general concern about any medication use in pregnancy, the advantages of actively treating asthma in pregnancy markedly outweigh any potential risks of usual asthma medications (Evidence A). For this reason, using medications to achieve good symptom control and prevent exacerbations is justified even when their safety in pregnancy has not been unequivocally proven. Use of ICS, beta agonists, montelukast or theophylline is not associated with an increased incidence of fetal abnormalities.

Women with asthma who are pregnant or planning pregnancy should be advised not to stop ICS-containing therapy. Importantly, ICS reduce the risk of exacerbations of asthma during pregnancy (Evidence A), and cessation of ICS during pregnancy is a significant risk factor for exacerbations (Evidence A). One study reported that a treatment algorithm in non-smoking pregnant women based on monthly measurement of fractional concentration of exhaled nitric oxide (FeNO) and symptoms using the Asthma Control Questionnaire (ACQ) was associated with significantly fewer exacerbations and better fetal outcomes than an algorithm based only on ACQ. However, the ACQ-only algorithm did not reflect current clinical recommendations, as LABA was introduced only after ICS had been increased to medium dose, and ICS could be stopped; 58% of women in the ACQ-only group were being treated without ICS by the end of pregnancy. In a subsequent large randomized controlled trial in pregnant women, there was no reduction in exacerbations with FeNO-guided treatment compared with usual care.

Use of ICS during pregnancy by women with asthma may also be protective for asthma in their children. A study using administrative data reported that uncontrolled maternal asthma increased the risk of early-onset asthma in the offspring. In an intervention study with follow-up for 4–6 years, the prevalence of asthma was over 50% lower in children of women with asthma who took ICS during pregnancy compared with women who did not take ICS, with the largest reduction in prevalence of asthma in children when ICS was being taken in early pregnancy (before weeks 12–20). On balance, given the evidence in pregnancy and infancy for adverse outcomes from exacerbations during pregnancy (Evidence A), including due to lack of ICS or poor adherence, and evidence for safety of usual doses of ICS and LABA (Evidence A), a low priority should be placed on stepping down treatment (regardless of the method used to assess control) until after delivery (Evidence D), and ICS should not be stopped in preparation for pregnancy or during pregnancy (Evidence C).

Despite lack of evidence for adverse effects of asthma treatment in pregnancy, many women and healthcare providers remain concerned about medication. Pregnant patients with asthma should be advised that poorly controlled asthma, and exacerbations, provide a much greater risk to their baby than do current asthma treatments. Educational resources about asthma management during pregnancy may provide additional reassurance. During pregnancy, monitoring of asthma every 4–6 weeks is recommended. It is feasible for this to be achieved by pharmacist-clinician collaboration, with monthly telephone monitoring of asthma symptom control. One observational study found that pregnant women...
whose asthma was well controlled without controller therapy and who had no history of previous exacerbations were at low risk for exacerbations during pregnancy. However, such women should still be closely monitored.

For women with severe asthma, evidence on use of biologic therapies during pregnancy is scarce. A registry study found no evidence of an increased risk of major congenital malformations when mothers received omalizumab during pregnancy. Women should be counselled that the potential risks associated with biologic exposure during pregnancy need to be balanced against the risks for themselves and their children caused by uncontrolled asthma.

During acute asthma exacerbations, pregnant women may be less likely to be treated appropriately than non-pregnant patients. To avoid fetal hypoxia, it is important to manage acute asthma exacerbations during pregnancy aggressively with SABA, oxygen, and early administration of systemic corticosteroids. Respiratory infections should be monitored and managed appropriately during pregnancy.

During labor and delivery, usual maintenance medications should be taken, with reliever if needed. Acute exacerbations during labor and delivery are uncommon, but bronchoconstriction may be induced by hyperventilation during labor, and should be managed with SABA. Neonatal hypoglycemia may be seen, especially in preterm babies, when high doses of beta-agonists have been given within the last 48 hours prior to delivery. If high doses of SABA have been given during labor and delivery, blood glucose levels should be monitored in the baby (especially if preterm) for the first 24 hours.

A review of asthma guidelines for the management of asthma during pregnancy highlighted the need for greater clarity in current recommendations and the need for more RCTs among pregnant asthma patients.

Women – perimenstrual asthma (catamenial asthma)

Clinical features

In approximately 20% of women, asthma is worse in the premenstrual phase. These women tend to be older, have more severe asthma, a higher BMI, a longer duration of asthma, and a greater likelihood of aspirin-exacerbated respiratory disease (AERD). They more often have dysmenorrhea, premenstrual syndrome, shorter menstrual cycles, and longer menstrual bleeding. The role of hormone levels and systemic inflammation remains unclear.

Management

In addition to the usual strategies for management of asthma, oral contraceptives and/or leukotriene receptor antagonists may be helpful (Evidence D). Further research is needed.

Occupational asthma

Clinical features

In the occupational setting, rhinitis often precedes the development of asthma (see p.33 for information on making the diagnosis of occupational asthma). Once a patient has become sensitized to an occupational allergen, the level of exposure necessary to induce symptoms may be extremely low; resulting exacerbations become increasingly severe, and with continued exposure, persistent symptoms and irreversible airflow limitation may result.

Management

Detailed information is available in evidence-based guidelines about management of occupational asthma. All patients with adult-onset asthma should be asked about their work history and other exposures (Evidence A). The early identification and elimination of occupational sensitizers and the removal of sensitized patients from any further exposure are important aspects of the management of occupational asthma (Evidence A). Attempts to reduce occupational exposure have been successful, especially in industrial settings. Cost-effective minimization of latex sensitization can be achieved by using non-powdered low-allergen gloves instead of powdered latex gloves. Patients with suspected or confirmed occupational asthma should be referred for expert assessment and advice, if this is available, because of the economic and legal implications of the diagnosis (Evidence A).
The elderly

Clinical features

Lung function generally decreases with longer duration of asthma and increasing age, due to stiffness of the chest wall, reduced respiratory muscle function, loss of elastic recoil and airway wall remodeling. Older patients may not report asthma symptoms, and may attribute breathlessness to normal aging or comorbidities such as cardiovascular disease and obesity. Among the elderly, there is no increased risk of cardiovascular disease among those with asthma, compared with those without asthma, except in current or former smokers. Comorbid arthritis may contribute to reduced exercise capacity and lack of fitness, and make inhaler device use difficult. Asthma costs may be higher amongst older patients, because of higher hospitalization rates and medication costs.

Management

Decisions about management of asthma in older people with asthma need to take into account both the usual goals of symptom control and risk minimization and the impact of comorbidities, concurrent treatments and lack of self-management skills. Data on efficacy of asthma medications in the elderly are limited because these patients are often excluded from major clinical trials. Side-effects of beta₂ agonists such as cardiotoxicity, and corticosteroid side-effects such as skin bruising, osteoporosis and fragility fractures, and cataracts, are more common in the elderly than in younger adults. Clearance of theophylline is also reduced. Elderly patients should be asked about all of the other medications they are taking, including eye-drops, and potential drug interactions should be considered. Factors such as arthritis, muscle weakness, impaired vision and inspiratory flow should be considered when choosing inhaler devices for older patients and inhaler technique should be checked at each visit. Older patients may have difficulties with complex medication regimens, and prescribing of multiple inhaler devices should be avoided if possible. Large-print versions may be needed for written information such as asthma action plans. Patients with cognitive impairment may require a career to help them use their asthma medications. For diagnosis and initial management of patients with asthma-COPD overlap, see Section 7 (p.131).

Aspirin-exacerbated respiratory disease (AERD)

Clinical features

The clinical picture and course of AERD (previously called aspirin-induced asthma) are well established. It starts with nasal congestion and anosmia, and progresses to chronic rhinosinusitis with nasal polyps that re-grow rapidly after surgery. Asthma and hypersensitivity to aspirin and nonsteroidal anti-inflammatory drugs (NSAIDs) develop subsequently. Following ingestion of aspirin or NSAIDs, an acute asthma attack develops within minutes to 1–2 hours. It is usually accompanied by rhinorrhea, nasal obstruction, conjunctival irritation, and scarlet flush of the head and neck, and may sometimes progress to severe bronchospasm, shock, loss of consciousness, and respiratory arrest. AERD is more likely to be associated with low lung function and severe asthma, and with increased need for emergency care. The prevalence of AERD is 7% in general adult asthma populations, and 15% in severe asthma.

Diagnosis

A history of exacerbation following ingestion of aspirin or other NSAIDs is highly suggestive of AERD. Aspirin challenge (oral, bronchial or nasal) is the gold standard for diagnosis as there are no reliable in vitro tests, but oral aspirin challenge tests must only be conducted in a specialized center with cardiopulmonary resuscitation capabilities because of the high risk of severe reactions. Bronchial (inhalational) and nasal challenges with lysine aspirin are safer than oral challenges and may be safely performed in allergy centers.

Management

Patients with AERD should avoid aspirin or NSAID-containing products and other medications that inhibit cyclooxygenase-1 (COX-1), but this does not prevent progression of the disease. Where an NSAID is indicated for other medical conditions, a COX-2 inhibitor (e.g., celecoxib or etoricoxib), or paracetamol (acetaminophen), may be considered with appropriate healthcare provider supervision and observation for at least 2 hours after administration (Evidence B). ICS are the mainstay of asthma therapy in AERD, but OCS are sometimes required; LTRA may also be useful (Evidence...
but note the concern about potential neuropsychiatric adverse effects with montelukast. See section 8 (p.139) for treatment options for patients with severe asthma. An additional option is aspirin desensitization, which may be conducted under specialist care in a clinic or hospital. Desensitization to aspirin followed by daily aspirin treatment can significantly improve upper respiratory symptoms and overall quality of life, decrease recurrence of nasal polyps, reduce the need for OCS and sinus surgery, and improve nasal and asthma scores, but few double-blind studies have examined asthma outcomes. Aspirin desensitization is associated with a significantly increased risk of adverse effects such as gastritis and gastrointestinal bleeding.

Allergic bronchopulmonary aspergillosis (ABPA)

Clinical features

Allergic bronchopulmonary aspergillosis (ABPA) is a complex pulmonary disease characterized by repeated episodes of wheezing, fleeting pulmonary opacities and development of bronchiectasis, sometimes with malaise, weight loss and hemoptysis. Some patients expectorate brownish sputum plugs. ABPA is most commonly diagnosed in people with asthma or cystic fibrosis, due to a hypersensitivity response to *Aspergillus fumigatus*, a common indoor and outdoor mold.

Diagnosis

Diagnosis of ABPA is based on composite criteria including immediate hypersensitivity reaction to *A. fumigatus*, total serum IgE, specific IgG to *A. fumigatus*, radiological features and blood eosinophils. Sensitization to fungal allergens, without the full picture of ABPA, is often found in asthma, particularly in severe asthma, where it is sometimes called ‘severe asthma with fungal sensitization’.

Management

Current first-line therapy is with oral corticosteroids (e.g., a 4-month tapering course), with itraconazole reserved for those with exacerbations or requiring long-term OCS. Clinicians should be aware of the potential for drug interactions between itraconazole (a cytochrome P450 inhibitor) and asthma medications. These interactions may lead to increased risk of ICS adverse effects such as adrenal suppression and Cushing’s syndrome, and may increase the risk of cardiovascular adverse effects of some LABAs (salmeterol and vilanterol). Concomitant use is not recommended, so it may be appropriate to switch ICS-LABA treatment to an alternative product such as budesonide-formoterol or mometasone-formoterol for the duration of treatment with itraconazole.

A randomized double-blind placebo-controlled study in patients with severe asthma and ABPA found significantly fewer exacerbations with omalizumab (anti-IgE) than placebo. A systematic review and meta-analysis that included this trial and others, but with a total of only 450 patients in the analysis, provides evidence of moderate quality that patients with ABPA who do not respond to treatment with oral corticosteroids have a favorable response to omalizumab without substantial side effects. There have also been case series reports of treatment of ABPA with benralizumab, dupilumab and mepolizumab. Information about use of biologic therapies in severe asthma is covered in Section 8 (p.139).

In patients with ABPA and bronchiectasis, regular physiotherapy and daily drainage are recommended. Patients with ABPA should be referred for specialist investigation and care if available.

Surgery and asthma

Clinical features

There is no evidence of increased peri-operative risk for the general asthma population. However, there is an increased risk for patients with COPD and this may also apply to asthma patients with reduced FEV₁. The incidence of severe peri-operative bronchospasm in people with asthma is low, but it may be life threatening.

Management

For elective surgery, meticulous attention should be paid pre-operatively to achieving good asthma control, as detailed elsewhere in this chapter, especially for patients with more severe asthma, uncontrolled symptoms, exacerbation history, or persistent airflow limitation (Evidence B). For patients requiring emergency surgery, the risks of proceeding without
first achieving good asthma control should be weighed against the need for immediate surgery. Patients taking long-term high-dose ICS or who have received OCS for more than 2 weeks during the previous 6 months should receive hydrocortisone peri-operatively as they are at risk of adrenal crisis in the context of surgery (Evidence B). More immediate intra-operative issues relating to asthma management are reviewed in detail elsewhere. For all patients, maintaining their prescribed ICS-containing therapy throughout the peri-operative period is important.

Air travel and asthma

Practical advice for air travel by people with respiratory disease was published by the British Thoracic Society (BTS) in 2022. The advice for people with asthma included pre-flight optimization of treatment, carrying all asthma medications and spacer (if used) in the cabin to allow immediate access during the flight (and in case checked luggage is mislaid), and carrying a copy of the patient’s asthma action plan.
7. Diagnosis and initial treatment in adults with features of asthma, COPD or both

KEY POINTS

Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous and overlapping conditions

- ‘Asthma’ and ‘COPD’ are umbrella labels for heterogeneous conditions characterized by chronic airway and/or lung disease. Asthma and COPD each include several different clinical phenotypes, and are likely to have several different underlying mechanisms, some of which may be common to both asthma and COPD.
- Symptoms of asthma and COPD may be similar, and the diagnostic criteria overlap.

Why are the labels ‘asthma’ and ‘COPD’ still important?

- There are extremely important differences in evidence-based treatment recommendations for asthma and COPD. For example, treatment with a long-acting beta2 agonist (LABA) and/or long-acting muscarinic antagonist (LAMA) alone (i.e., without inhaled corticosteroids [ICS]) is recommended as initial treatment in COPD but contraindicated in asthma due to the risk of severe exacerbations and death.
- These risks are also seen in patients who have diagnoses of both asthma and COPD, making it important to identify adult patients who, for safety, should not be treated with long-acting bronchodilators alone. ICS reduce mortality and hospitalizations in patients with asthma, including in those with concomitant COPD.

Many patients have features of both asthma and COPD

- Distinguishing asthma from COPD can be difficult, particularly in smokers and older adults, and some patients may have features of both asthma and COPD.
- The terms ‘asthma-COPD overlap’ or ‘asthma+COPD’ are simple descriptors for patients who have features of both asthma and COPD.
- These terms do not refer to a single disease entity. They include patients with several clinical phenotypes that are likely caused by a range of different underlying mechanisms.
- More research is needed to better define these phenotypes and mechanisms, but in the meantime, safety of pharmacologic treatment is a high priority.

Diagnosis

- Diagnosis in patients with chronic respiratory symptoms involves a stepwise approach, first, is the patient likely to have chronic airways disease, then syndromic categorization as having typical asthma, typical COPD, features of both, and/or with other conditions such as bronchiectasis.
- Lung function testing is essential for confirming persistent airflow limitation, but variable airflow obstruction can be detected with serial peak flow measurements and/or measurements before and after bronchodilator.

Initial treatment for safety and clinical efficacy

- For asthma: ICS are essential, either alone or in combination with a LABA, to reduce the risk of severe exacerbations and death. Do not treat with LABA and/or LAMA alone, without ICS.
- For patients with features of both asthma and COPD, treat as asthma. ICS-containing therapy is important to reduce the risk of severe exacerbations and death. Do not give LABA and/or LAMA alone without ICS.
- For COPD: Treat according to current recommendations from the Global Initiative for Chronic Obstructive Lung Disease (GOLD), i.e., initial treatment with LAMA and LABA, plus as-needed SABA; add ICS for patients with...
hospitalizations, ≥2 exacerbations/year requiring oral corticosteroids (OCS), or blood eosinophils ≥300/µl. Avoid high dose ICS because of risk of pneumonia.

- **All patients**: provide structured education especially focusing on inhaler technique and adherence; assess for, and treat, other clinical problems, including advice about smoking cessation, immunizations, physical activity, and management of multimorbidity.

- **Specialist referral** for additional investigations in patients with asthma+COPD is encouraged, as they often have worse outcomes than patients with asthma or COPD alone.

OBJECTIVES

The objectives of this section of the GINA Strategy Report are:

- To assist primary care clinicians to identify typical asthma and typical COPD and to recognize when patients have features of both. This is particularly relevant in patients aged 40 years and older.
- To provide advice about safe and effective initial treatment
- To provide guidance on indications for referral for specialist assessment.

BACKGROUND TO DIAGNOSING ASTHMA AND/OR COPD IN ADULT PATIENTS

Why are the labels ‘asthma’ and ‘COPD’ still important?

Asthma and COPD are heterogeneous conditions characterized by airway obstruction. Each of these ‘umbrella’ labels includes several different patterns of clinical features (phenotypes) that may overlap. Each may also include different inflammatory patterns and different underlying mechanisms, some of which may be common to both asthma and COPD.627

The most easily recognized phenotypes of asthma and COPD such as allergic asthma in children/young adults and emphysema in older smokers are clearly distinguishable. Regulatory studies of pharmacotherapy in asthma and COPD are largely restricted to patients with very clearly defined asthma or COPD. However, in the community, the features of asthma and COPD may overlap, especially in older adults.

There are extremely important differences in treatment recommendations for asthma and COPD. In particular, treatment with long-acting bronchodilators alone (i.e., without ICS) is recommended for initial treatment in COPD but is contraindicated in asthma due to the risk of severe exacerbations and death. Several studies have also shown that patients with diagnoses of both asthma and COPD are at increased risk of hospitalization or death if they are treated with LABA or LABA-LAMA, compared with ICS-LABA (or ICS-LABA-LAMA).630-632

Challenges in clinical diagnosis of asthma and COPD

Although asthma is characterized by variable expiratory airflow limitation, at least initially (Box 1-2, p.26), and COPD is characterized by persistent airflow limitation, the definitions of asthma and COPD are not mutually exclusive (Box 7-1, p.133). This means that clinical features are also important in making a diagnosis and treating appropriately.

In children and young adults with chronic or recurrent respiratory symptoms, the differential diagnosis is different from that in older adults (see Box 1-3, p.27). Once infectious disease and nonpulmonary conditions (e.g., congenital heart disease, inducible laryngeal obstruction) have been excluded, the most likely chronic airway disease in children and young adults is asthma.

However, in adults with a history of long-standing asthma, persistent airflow limitation may be found. Distinguishing this from COPD is problematic, especially if they are smokers or have other risk factors for COPD. On the other hand, patients with COPD may show evidence of reversible airflow obstruction when a rapid-acting bronchodilator is administered, a feature more strongly associated with asthma. In medical records, such patients often are assigned both diagnoses.74,644
In keeping with common usage of the term 'overlap' in other contexts, e.g., for the association between COPD with sleep disorders, and in overlap syndromes of collagen vascular disease, the descriptive term ‘asthma-COPD overlap’ is often used. Another common descriptor is ‘asthma+COPD’.

‘Asthma-COPD overlap’ is a descriptor for patients often seen in clinical practice, who comprise a heterogeneous group. It does not mean a single disease entity.

Box 7-1. Current definitions of asthma and COPD, and clinical description of asthma-COPD overlap

<table>
<thead>
<tr>
<th>Asthma (GINA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma is a heterogeneous disease, usually characterized by chronic airway inflammation. It is defined by the history of respiratory symptoms such as wheeze, shortness of breath, chest tightness and cough that vary over time and in intensity, together with variable expiratory airflow limitation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COPD (GOLD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung condition characterized by chronic respiratory symptoms (dyspnea, cough, sputum production and/or exacerbations) due to abnormalities of the airways (bronchitis, bronchiolitis) and/or alveoli (emphysema) that cause persistent, often progressive, airflow obstruction.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asthma+COPD, also called asthma-COPD overlap (descriptive term)</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Asthma-COPD overlap’ and ‘asthma +COPD’ are terms used to collectively describe patients who have persistent airflow limitation together with clinical features that are consistent with both asthma and COPD. This is not a definition of a single disease entity, but a descriptive term for clinical use that includes several different clinical phenotypes reflecting different underlying mechanisms.</td>
</tr>
</tbody>
</table>

Prevalence and morbidity of asthma-COPD overlap

In epidemiological studies, reported prevalence rates for asthma+COPD have ranged between 9% and 55% of those with either diagnosis, with variation by gender and age. The wide range reflects the different criteria that have been used by different investigators. Concurrent doctor-diagnosed asthma and COPD has been reported in between 15 and 32% of patients with one or other diagnosis.

There is broad agreement that patients with features of both asthma and COPD have a greater burden of symptoms, experience frequent exacerbations, have poor quality of life, a more rapid decline in lung function, higher mortality, and greater use of healthcare resources, compared with patients with asthma or COPD alone.

ASSESSMENT AND MANAGEMENT OF CHRONIC RESPIRATORY SYMPTOMS

1: History and clinical assessment

Establish:

- The nature and pattern of respiratory symptoms (variable and/or persistent)
- History of asthma diagnosis; childhood and/or current
- Exposure history: smoking and/or other exposures to risk factors for COPD.

The features that are most helpful in identifying and distinguishing asthma from COPD, and the features that should prompt a patient to be treated as asthma to reduce the risk of severe exacerbations and death, are shown in Box 7-2 (p.134).
Box 7-2. Syndromic approach to initial treatment in patients with asthma and/or COPD

Clinical Phenotype - Adults with Chronic Respiratory Symptoms (dyspnea, cough, chest tightness, wheeze)

Highly Likely to be Asthma
- If several of the following features:
 - Treat as Asthma

Features of Both Asthma + COPD
- Treat as Asthma

Likely to be COPD
- If several of the following features:
 - Treat as COPD

History
- Symptoms vary over time and in intensity
 - Triggers may include laughter, exercise, allergens, seasonal
 - Onset before age 40 years
 - Symptoms improve spontaneously or with bronchodilators (minutes) or ICS (days to weeks)
- Current asthma diagnosis, or asthma diagnosis in childhood

Lung Function
- Variable expiratory airflow limitation
- Persistent airflow limitation may be present

Initial Pharmacological Treatment (as well as treating comorbidities and risk factors. See Box 3-12)

- **ICS-containing treatment is essential to reduce risk of severe exacerbations and death.**
 - GINA Track 1 with ICS-formoterol as reliever is the preferred regimen.
 - See Box 4-6 and Box 4-8
- **Do not give LABA and/or LAMA without ICS**
- **Maintenance OCS only as last resort**

- **ICS-containing treatment is essential to reduce risk of severe exacerbations and death.**
 - Add-on LABA and/or LAMA usually also needed
 - Additional COPD treatments as per GOLD
 - **Do not give LABA and/or LAMA without ICS**
 - Maintenance OCS only as last resort

- **Treat as COPD (see GOLD report)**
 - Initially maintenance LABA-LAMA
 - Add ICS as per GOLD for patients with hospitalizations, 2 exacerbations/year requiring OCS, or blood eosinophils ≥300/μl
 - Avoid high dose ICS, avoid maintenance OCS
 - Reliever containing ICS is not recommended

Review Patient After 2-3 Months. Refer for Expert Advice if Diagnostic Uncertainty or Inadequate Response

See list of abbreviations (p.11).
Caution: Consider alternative diagnoses; other airways diseases, such as bronchiectasis and chronic bronchitis, and other forms of lung disease such as interstitial lung disease may present with some of the above features. The above approach to diagnosis does not replace the need for a full assessment in patients presenting with respiratory symptoms, to first exclude non-respiratory diagnoses such as heart failure. Physical examination may provide supportive information.

2: Lung function testing is essential

Use lung function testing to confirm:

- The presence of persistent expiratory airflow limitation
- Variable expiratory airflow limitation.

Spirometry is preferably performed at the initial assessment. In cases of clinical urgency it may be delayed to a subsequent visit, but confirmation of diagnosis may be more difficult once patients are started on ICS-containing therapy (see Box 1-4, p.30). Early confirmation (or exclusion) of the presence of persistent expiratory airflow limitation may avoid needless trials of therapy, or delays in initiating other investigations. Spirometry can confirm both persistent airflow limitation and reversibility (Box 7-2, p.134 and Box 7-3, p.135).

Measurement of peak expiratory flow (PEF), if performed repeatedly on the same meter over a period of 1–2 weeks, may help to confirm reversible airflow limitation and the diagnosis of asthma by demonstrating excessive variability (Box 1-2, p.26). However, PEF is not as reliable as spirometry, and a normal PEF does not rule out either asthma or COPD.

Box 7-3. Spirometric measures in asthma and COPD

<table>
<thead>
<tr>
<th>Spirometric variable</th>
<th>Asthma</th>
<th>COPD</th>
<th>Asthma+COPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal FEV₁/FVC pre- or post BD</td>
<td>Compatible with asthma. If patient is symptomatic at a time when lung function is normal, consider alternative diagnosis.</td>
<td>Not compatible with COPD</td>
<td>Not compatible</td>
</tr>
<tr>
<td>Reduced post-BD FEV₁/FVC (< lower limit of normal, or <0.7) [GOLD 2024]</td>
<td>Indicates airflow limitation but may improve spontaneously or on treatment</td>
<td>Required for diagnosis of COPD</td>
<td>Required for diagnosis of asthma+COPD</td>
</tr>
<tr>
<td>Post-BD FEV₁ ≥80% predicted</td>
<td>Compatible with diagnosis of asthma (good asthma control or interval between symptoms)</td>
<td>Compatible with mild persistent airflow limitation if post-BD FEV₁/FVC is reduced</td>
<td>Compatible with mild persistent airflow limitation if post-BD FEV₁/FVC is reduced</td>
</tr>
<tr>
<td>Post-BD FEV₁ <80% predicted</td>
<td>Compatible with diagnosis of asthma. Risk factor for asthma exacerbations</td>
<td>An indicator of severity of airflow limitation and risk of future events (e.g., mortality and COPD exacerbations)</td>
<td>As for COPD and asthma</td>
</tr>
<tr>
<td>Post-BD increase in FEV₁ ≥12% and 200 mL from baseline (reversible airflow limitation).</td>
<td>Usual at some time in course of asthma, but may not be present when well controlled or on ICS-containing therapy</td>
<td>Common and more likely when FEV₁ is low</td>
<td>Common and more likely when FEV₁ is low</td>
</tr>
<tr>
<td>Post-BD increase in FEV₁ >12% and 400 mL from baseline (marked reversibility)</td>
<td>High probability of asthma</td>
<td>Unusual in COPD</td>
<td>Compatible with asthma+COPD</td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11). The 2024 GOLD Report is available at https://goldcopd.org
For asthma

Commence treatment as described in Chapter 4 (Box 4-4, p.75 and Box 4-5, p.76). Pharmacotherapy is based on ICS to reduce the risk of severe exacerbations and death and to improve symptom control, with add-on treatment as required, e.g., add-on LABA and/or LAMA. As-needed low-dose ICS-formoterol may be used as the reliever, on its own in mild asthma or in addition to maintenance ICS-formoterol in patients with moderate-severe asthma prescribed maintenance-and-reliever therapy (see Box 4-6, p.77). Inhaled therapy should be optimized to minimize the need for oral corticosteroids (OCS).

For COPD

Commence treatment as in the current GOLD strategy report. Pharmacotherapy starts with symptomatic treatment with long-acting bronchodilators (LABA and LAMA). Use of ICS is strongly favored as per GOLD 2024 for patients with hospitalizations in the last year, ≥2 exacerbations/year requiring OCS, or blood eosinophils ≥300/µL, or with a history of asthma or concomitant asthma. However, ICS should not be used alone without LABA and/or LAMA. Inhaled therapy should be optimized to reduce the need for OCS. In patients with features of COPD, high-dose ICS should be avoided because of the risk of pneumonia.

For patients with features of asthma and COPD

Start treatment as for asthma (Box 4-4, p.75 and Box 4-5, p.76) until further investigations have been performed. ICS are essential in preventing morbidity and even death in patients with uncontrolled asthma symptoms, for whom even seemingly ‘mild’ symptoms (compared to those of moderate or severe COPD) might indicate significant risk of a life-threatening attack. For patients with asthma+COPD, ICS should be used initially in a low or medium dose (see Box 4-2, p.71), depending on level of symptoms and risk of adverse effects, including pneumonia.

Patients with features or diagnosis of both asthma and COPD will usually also require add-on treatment with LABA and/or LAMA to provide adequate symptom control.

Patients with any features of asthma should not be treated with LABA and/or LAMA alone, without ICS. A large case-control study in community patients with newly diagnosed COPD found that those who also had a diagnosis of asthma had a lower risk of COPD hospitalizations and death if treated with combination ICS-LABA than with LABA alone. In another large retrospective longitudinal population cohort study of patients aged ≥66 years, those recorded as having asthma with COPD had lower morbidity and hospitalizations if they received ICS treatment; a similar benefit was seen in those with COPD plus concurrent asthma.

All patients with chronic airflow limitation

Provide advice, as described in the GINA and GOLD reports, about:

- Treatment of modifiable risk factors including advice about smoking cessation
- Treatment of comorbidities
- Non-pharmacological strategies including physical activity, and, for COPD or asthma-COPD overlap, pulmonary rehabilitation and vaccinations
- Appropriate self-management strategies
- Regular follow-up.

In a majority of patients, the initial management of asthma and COPD can be satisfactorily carried out at primary care level. However, both the GINA and GOLD strategy reports recommend referral for further diagnostic procedures at relevant points in patient management (see below). This may be particularly important for patients with features of both asthma and COPD, given that this is associated with worse outcomes and greater healthcare utilization.
4: Refer for specialized investigations (if necessary)

Referral for expert advice and further diagnostic evaluation is advised in the following contexts:

- Patients with persistent symptoms and/or exacerbations despite treatment.
- Diagnostic uncertainty, especially if an alternative diagnosis (e.g., bronchiectasis, post-tuberculous scarring, bronchiolitis, pulmonary fibrosis, pulmonary hypertension, cardiovascular diseases and other causes of respiratory symptoms) needs to be investigated.
- Patients with suspected asthma or COPD in whom atypical or additional symptoms or signs (e.g., hemoptysis, significant weight loss, night sweats, fever, signs of bronchiectasis or other structural lung disease) suggest an additional pulmonary diagnosis. This should prompt early referral, without waiting for a trial of treatment for asthma or COPD.
- When chronic airways disease is suspected but syndromic features of either asthma or COPD are few.
- Patients with comorbidities that may interfere with the assessment and management of their airways disease, particularly cardiovascular disease.

Referral may also be appropriate for issues arising during ongoing management of asthma, COPD or asthma-COPD overlap, as outlined in the GINA and GOLD strategy reports.

Box 7-4 (p.137) summarizes specialized investigations that are sometimes used to distinguish asthma and COPD.

Box 7-4. Specialized investigations sometimes used in patients with features of asthma and COPD

<table>
<thead>
<tr>
<th></th>
<th>Asthma</th>
<th>COPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung function tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLCO</td>
<td>Normal (or slightly elevated)</td>
<td>Often reduced</td>
</tr>
<tr>
<td>Arterial blood gases</td>
<td>Normal between exacerbations</td>
<td>May be chronically abnormal between exacerbations in more severe forms of COPD</td>
</tr>
<tr>
<td>Airway hyperreponsiveness (AHR)</td>
<td>Not useful on its own in distinguishing asthma from COPD, but higher levels of AHR favor asthma</td>
<td></td>
</tr>
<tr>
<td>Imaging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High resolution CT Scan</td>
<td>Usually normal but air trapping and increased bronchial wall thickness may be observed.</td>
<td>Low attenuation areas denoting either air trapping or emphysematous change can be quantitated; bronchial wall thickening and features of pulmonary hypertension may be seen.</td>
</tr>
<tr>
<td>Biomarkers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A positive test for atopy (specific IgE and/or skin prick test to aeroallergens)</td>
<td>Increases probability of allergic asthma; not essential for diagnosis of asthma</td>
<td>Conforms to background prevalence; does not rule out COPD</td>
</tr>
<tr>
<td>FeNO</td>
<td>A high level (>50 ppb) in non-smokers is moderately associated with eosinophilic airway inflammation.</td>
<td>Usually normal</td>
</tr>
<tr>
<td>Blood eosinophilia</td>
<td>Supports diagnosis of eosinophilic airway inflammation.</td>
<td>May be present in COPD including during exacerbations</td>
</tr>
<tr>
<td>Sputum inflammatory cells</td>
<td>Role in differential diagnosis is not established in large populations.</td>
<td></td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11).
Unanswered clinical questions

There is an urgent need for more research on this topic to guide better recognition and safe and effective treatment. Patients who do not have ‘classical’ features of asthma or of COPD, or who have features of both, have generally been excluded from randomized controlled trials of most therapeutic interventions for airways disease, and from many mechanistic studies.

Future research should include study of clinical and physiological characteristics, biomarkers, outcomes and underlying mechanisms, among broad populations of patients with respiratory symptoms or with chronic airflow limitation. In the meantime, the present chapter provides interim advice about diagnosis and initial treatment, from the perspective of clinicians, particularly those in primary care and nonpulmonary specialties. Further research is needed to inform evidence-based definitions and a more detailed classification of patients who present overlapping features of asthma and COPD, and to encourage the development of specific interventions for clinical use.
KEY POINTS

What are difficult-to-treat asthma and severe asthma?

- Difficult-to-treat asthma is asthma that is uncontrolled despite prescribing of medium or high-dose treatment with the combination of inhaled corticosteroid (ICS) and long-acting beta2 agonist (LABA), or that requires high-dose ICS-LABA treatment to maintain good symptom control and reduce exacerbations. It does not mean a ‘difficult patient’.

- Severe asthma is asthma that is uncontrolled despite adherence with optimized high-dose ICS-LABA therapy and treatment of contributory factors, or that worsens when high-dose treatment is decreased. Approximately 3–10% of people with asthma have severe asthma.

- Severe asthma places a large physical, mental, emotional, social and economic burden on patients. It is often associated with multimorbidity.

How should these patients be assessed?

- Assess all patients with difficult-to-treat asthma to confirm the diagnosis of asthma, and to identify and manage factors that may be contributing to symptoms, poor quality of life, or exacerbations.

- Refer for expert advice at any stage, or if asthma does not improve in response to optimizing treatment.

- For patients with persistent symptoms and/or exacerbations despite high-dose ICS-containing therapy (with good adherence and correct inhaler technique), the clinical or inflammatory phenotype should be assessed, as this may guide the selection of add-on treatment.

Management of severe asthma

- Depending on the inflammatory phenotype and other clinical features, add-on treatments for severe asthma include long-acting muscarinic antagonists (LAMAs), leukotriene receptor antagonists (LTRAs), low-dose azithromycin (adults), and biologic agents for severe asthma.

- Low-dose maintenance oral corticosteroids (OCS) should be considered only as a last resort if no other options are available, because of their serious cumulative long-term side-effects.

- Assess the response to any add-on treatment, stop ineffective treatments, and consider other options.

- Utilize specialist multidisciplinary team care for severe asthma, if available.

- For patients with severe asthma, continue to optimize patient care in collaboration with the primary care clinician, and considering the patient’s social and emotional needs.

- Invite patients with severe asthma to enroll in a registry or clinical trial, if available and relevant, to help fill evidence gaps.

- See Boxes 8-2 through 8-5 (starting on p.142) for the GINA severe asthma decision tree.

- Although the majority of patients can achieve the goal of long-term well controlled asthma, some patients’ asthma will not be well controlled even with optimal therapy. This section will also be published separately as a GINA short guide for health professionals: Difficult-to-Treat and Severe Asthma in Adolescent and Adult Patients. Diagnosis and Management. V5.0, 2024 (the Severe Asthma Guide), available to download or order from the GINA website (www.ginasthma.org).

- Other resources about severe asthma include an online toolkit published by the Australian Centre of Excellence in Severe Asthma (www.toolkit.severeasthma.org.au).
DEFINITIONS: UNCONTROLLED, DIFFICULT-TO-TREAT, AND SEVERE ASTHMA

Understanding the definitions of difficult-to-treat and severe asthma starts with the concept of uncontrolled asthma.

Uncontrolled asthma includes one or both of the following:

- Poor symptom control (frequent symptoms or reliever use, activity limited by asthma, night waking due to asthma)
- Frequent exacerbations (≥2/year) requiring OCS, or serious exacerbations (≥1/year) requiring hospitalization.

Difficult-to-treat asthma is asthma that is uncontrolled despite prescribing of medium- or high-dose ICS with a second controller (usually a LABA) or with maintenance OCS, or that requires high-dose treatment to maintain good symptom control and reduce the risk of exacerbations. It does not mean a ‘difficult patient’. In many cases, asthma may appear to be difficult to treat because of modifiable factors such as incorrect inhaler technique, poor adherence, smoking or comorbidities, or because the diagnosis is incorrect.

Severe asthma is a subset of difficult-to-treat asthma (Box 8-1). It means asthma that is uncontrolled despite adherence with maximal optimized high-dose ICS-LABA treatment and management of contributory factors, or that worsens when high-dose treatment is decreased. At present, therefore, ‘severe asthma’ is a retrospective label. It is sometimes called ‘severe refractory asthma’, because it is defined by being relatively refractory to high-dose inhaled therapy. However, with the advent of biologic therapies, the word ‘refractory’ is no longer appropriate.

Asthma is not classified as severe if it markedly improves when contributory factors such as inhaler technique and adherence are addressed.

PREVALENCE: HOW MANY PEOPLE HAVE SEVERE ASTHMA?

A study in the Netherlands estimated that around 3.7% of asthma patients have severe asthma, based on the number of patients prescribed high-dose ICS-LABA, or medium or high-dose ICS-LABA plus long-term OCS, who had poor symptom control (by Asthma Control Questionnaire) and had good adherence and inhaler technique (Box 8-1).

Box 8-1. What proportion of adults have difficult-to-treat or severe asthma?

See list of abbreviations (p.11). Data from the Netherlands, reported by Hekking et al (2015)
IMPORTANCE: THE IMPACT OF SEVERE ASTHMA

The patient perspective

Patients with severe asthma experience a heavy burden of symptoms, exacerbations and medication side-effects. Frequent shortness of breath, wheeze, chest tightness and cough interfere with day-to-day living, sleeping, and physical activity, and patients often have frightening or unpredictable exacerbations (also called attacks or severe flare-ups). Medication side-effects are particularly common and problematic with OCS, which in the past were a mainstay of treatment for severe asthma. Adverse effects of long-term or frequent OCS include obesity, diabetes, osteoporosis and fragility fractures; cataracts, hypertension and adrenal suppression; psychological side-effects such as depression and anxiety are particularly concerning for patients. Even short-term use of OCS is associated with sleep disturbance, and increased risk of infection, fracture and thromboembolism. Strategies to minimize need for OCS are therefore a high priority.

Severe asthma often interferes with family, social and working life, limits career choices and vacation options, and affects emotional and mental health. Patients with severe asthma often feel alone and misunderstood, as their experience is so different from that of most people with asthma.

Adolescents with severe asthma

The teenage years are a time of great psychological and physiological development which can impact on asthma management. It is vital to ensure that the young person has a good understanding of their condition and treatment and appropriate knowledge to enable supported self-management. The process of transition from pediatric to adult care should help support the young person in gaining greater autonomy and responsibility for their own health and wellbeing. Severe asthma may improve over 3 years in approximately 30% of male and female adolescents; the only predictor of asthma becoming non-severe was higher baseline blood eosinophils. Studies with longer follow-up time are needed.

Healthcare utilization and costs

Severe asthma has very high healthcare costs due to medications, physician visits, hospitalizations, and the costs of OCS side-effects. In a UK study, healthcare costs per patient were higher than for type 2 diabetes, stroke, or COPD. In a Canadian study, severe uncontrolled asthma was estimated to account for more than 60% of asthma costs. Patients with severe asthma and their families also bear a significant financial burden, not only for medical care and medications, but also through lost earnings and career choices.

OVERVIEW OF DECISION TREE FOR ASSESSMENT AND MANAGEMENT OF DIFFICULT-TO-TREAT AND SEVERE ASTHMA

The clinical decision tree (from p.142), provides brief information about what should be considered in each phase of diagnosis and management of difficult-to-treat and severe asthma. The decision tree is divided into three broad stages:

- **Stages 1–4 (green)** are for use in primary care and/or specialist care.
- **Stages 5–8 (blue)** are mainly relevant to respiratory specialists.
- **Stages 9–10 (brown)** are about maintaining ongoing collaborative care between the patient, primary care physician, specialist and other health professionals.

Development of the Severe Asthma Guide and decision tree included extensive collaboration with experts in human-centered design to enhance the utility of these resources for end-users. This included translating existing high-level flowcharts and text-based information to a more detailed visual format, and applying information architecture and diagramming principles.

The decision tree is followed by more detailed information on each stage of assessment and management.
Box 8-2. Decision tree – investigate and manage difficult to treat asthma in adult and adolescent patients

GP OR SPECIALIST CARE

Investigate and manage difficult-to-treat asthma in adults and adolescents

Consider referring to specialist or severe asthma clinic at any stage

1. Confirm the diagnosis (asthma/differential diagnoses)
 - Incorrect inhaler technique
 - Suboptimal adherence
 - Comorbidities including obesity, GERD, chronic rhinosinusitis, OSA
 - Modifiable risk factors and triggers at home or work, including smoking, environmental exposures, allergen exposure (if sensitized); medications such as beta-blockers and NSAIDs
 - Overuse of SABA relievers
 - Medication side effects
 - Anxiety, depression and social difficulties

2. Look for factors contributing to symptoms, exacerbations and poor quality of life:

3. Optimize management, including:
 - Asthma education
 - Optimize treatment (e.g. check and correct inhaler technique and adherence; switch to ICS-formoterol maintenance and reliever therapy, if available)
 - Consider non-pharmacological interventions (e.g. smoking cessation, avoidance, weight loss, musculoskeletal, influenza, and COVID-19 vaccination)
 - Treat comorbidities and modifiable risk factors
 - Consider non-biologic add-on therapy (e.g. LABA, LAMA, LMLTRA, if not used)
 - Consider trial of high dose ICS-LABA, if not used

4. Review response after ~3-5 months

Is asthma still uncontrolled?
 - Yes: Consider stepping down treatment, OCS first (if used)
 - No: Restore previous dose

Does asthma become uncontrolled when treatment is stepped down?
 - Yes: Continue optimizing management
 - No: Restore previous dose

If not done by now, refer to a specialist, if possible

See list of abbreviations (p.11).
Box 8-3. Decision tree – assess and treat severe asthma phenotypes

SPECIALIST CARE; SEVERE ASThma CLINIC IF AVAILABLE

Assess and treat severe asthma phenotypes

Continue to optimize management as in section 3 (including inhaler technique, adherence, comorbidities, non-pharmacologic strategies)

→ **5 Investigate further and provide patient support**

→ **6 Assess the severe asthma phenotype**

→ **7 Consider other treatments**

See list of abbreviations (p.11).

Type 2 inflammation

- Blood eosinophils ≥0.35% and/or
- FeNO ≥30 ppb and/or
- Sputum eosinophils ≥2%, and/or
- Asthma is clinically allergen-driven
 (Repeat blood eosinophils and FeNO up to 3x or at least 1-2 weeks after OCS or on lowest possible OCS dose)

Type 2 airway inflammation

- Consider adherence tests
- Consider increasing the ICS dose for 3-6 months
- Consider add-on non-biologic treatment for specific Type 2 clinical phenotypes, e.g., AERD, ABPA, chronic rhinosinusitis, nasal polyps, angioedema

If add-on Type 2-targeted biologic therapy is NOT available/affordable

- Consider higher dose ICS, if not used
- Consider other add-on therapy (e.g., LAMA, LMBTRA, low dose azithromycin)
- As last resort, consider add-on low dose OCS, but implement strategies to minimize side-effects
- Stop ineffective add-on therapies

No evidence of Type 2 airway inflammation

- Review the basics: differential diagnosis, inhaler technique, adherence, comorbidities, side-effects
- Avoid exposures (tobacco smoke, allergens, irritants)
- Consider investigations (if available and not done)
 - Sputum induction
 - High-resolution chest CT
 - Bronchoscopy for alternative/additional diagnoses
- Consider trial of add-on treatments (if available and not already tried)
 - LAMA
 - Low dose azithromycin
 - Anti-H1Rx (if taking maintenance OCS)
 - Anti-TG1 (but insufficient evidence in patients on maintenance OCS)
 - As last resort, consider add-on low dose OCS, but implement strategies to minimize side-effects
 - Consider bronchial thermoplasty (+ registry)
 - Stop ineffective add-on therapies

Check local eligibility criteria for specific biologic therapies as these may vary from those listed
Box 8-4. Decision tree – consider add-on biologic Type 2-targeted treatments

Assess and treat severe asthma phenotypes cont’d

Continue to optimize management as in section 3 (including inhaler technique, adherence, comorbidities, non-pharmacologic strategies)

Consider add-on biologic Type 2-targeted treatments

- Consider add-on Type 2-targeted biologic therapy for patients with exacerbations or poor symptom control on high dose ICS-LABA, who have evidence of Type 2 inflammation
- Consider local payer eligibility criteria, comorbidities and predictors of response when choosing between available therapies
- Also consider cost, dosing frequency, route (SC or IV), patient preference

Eligibility

Anti-IgE (omalizumab)

- Is the patient eligible for anti-IgE for severe allergic asthma?*
 - Sensitization on skin prick testing or specific IgE
 - Total serum IgE and weight within dosage range
 - Exacerbations in last year

Anti-IL5/ Anti-IL5R (Benralizumab, mepolizumab, reslizumab)

- Is the patient eligible for anti-IL5/anti-IL5R for severe eosinophilic asthma?*
 - Exacerbations in last year
 - Blood eosinophils, e.g. ≥150/μl or ≥300/μl

Anti-IL4rα (dupilumab)

- Is the patient eligible for anti-IL4rα for severe eosinophilic Type 2 asthma?*
 - Exacerbations in last year
 - Blood eosinophils ≥150 and ≤1500/μl, or FeNO ≥25 pps, or taking maintenance OCS

Anti-TSLP (teselaftumab)

- Is the patient eligible for anti-TSLP for severe asthma?*
 - Exacerbations in last year

Predictors of asthma response

What factors may predict good asthma response to anti-IgE?
- Blood eosinophils ≥250/μl
- FeNO ≥25 pps
- Allergen-driven symptoms
- Childhood-onset asthma

What factors may predict good asthma response to anti-IL5/IL5R?
- Higher blood eosinophils
- More exacerbations in previous year
- Adult onset of asthma
- Nasal polyps

What factors may predict good asthma response to anti-IL4rα?
- Higher blood eosinophils
- Higher FeNO

What factors may predict good asthma response to anti-TSLP?
- Higher blood eosinophils
- Higher FeNO

Extend trial to 6-12 months*

Choose one if eligible*: trial for at least 4 months and assess response

Good asthma response?*

- Yes
- Good response to T2-Ligated therapy

STOP add-on

Consider switching to a different Type 2-targeted therapy, if eligible

Little/no response to T2-Ligated therapy

No evidence of Type 2 airway inflammation

No evidence of Type 2 airway inflammation. Go to section 10

* Check local eligibility criteria for specific biologic therapies as these may vary from those listed

See list of abbreviations (p.11).
Box 8-5. Decision tree – monitor and manage severe asthma treatment

Monitor / Manage severe asthma treatment

9 Review response

- Asthma: symptom control, exacerbations, lung function
- Type 2 comorbidities e.g. nasal polyposis, atopic dermatitis
- Medications: treatment intensity, side-effects, affordability
- Patient satisfaction

If good response to Type 2-targeted therapy
- Re-evaluate the patient every 3-6 months *
- First, consider decreasing/stopping OCS (and check for adrenal insufficiency), then consider stopping other add-on asthma medications
- Then, if asthma well-controlled for 3-6 months, consider reducing maintenance ICS-LABA dose, but do not stop maintenance ICS-LABA. See text for details.
- Re-evaluate need for ongoing biologic therapy
- Order of reduction of treatments based on observed benefit, potential side-effects, cost and patient preference

10 Continue to optimize management as in section 3, including:

- Inhaler technique
- Adherence
- Comorbidity management
- Non-pharmacologic strategies
- Patients’ social/emotional needs
- Two-way communication with GP for ongoing care

Notes:

If no good response to Type 2-targeted therapy
- Stop the biologic therapy
- Review the basics: differential diagnosis, inhaler technique, adherence, comorbidities, side-effects, emotional support
- Consider high resolution chest CT (if not done)
- Reassess phenotype and treatment options
 - Induced sputum (if available)
 - Consider add-on low dose azithromycin
 - Consider bronchoscopy for alternative/additional diagnoses
 - As last resort, consider add-on low dose OCS, but implement strategies to minimize side-effects
 - Consider bronchial thermoplasty (+ registry)
- Stop ineffective add-on therapies
- Do not stop ICS

No evidence of Type 2 airway inflammation. Go to section 10

* Check local eligibility criteria for specific biologic therapies as these may vary from those listed

See list of abbreviations (p.11).
INVESTIGATE AND MANAGE DIFFICULT-TO-TREAT ASTHMA IN ADULTS AND ADOLESCENTS

1. Confirm the diagnosis (asthma or differential diagnoses)

Stages 1–5 can be carried out in primary or specialist care. A patient is classified as having difficult-to-treat asthma if they have persistent asthma symptoms and/or exacerbations despite prescribing of medium or high-dose ICS with another controller such as LABA, or maintenance OCS, or require high-dose ICS-LABA treatment to maintain good symptom control and prevent exacerbations. Difficult-to-treat asthma does not mean a ‘difficult patient’.

Consider referral to a specialist or severe asthma clinic at any stage, particularly if:

- There is difficulty confirming the diagnosis of asthma
- Patient has frequent urgent healthcare utilization
- Patient needs frequent or maintenance OCS
- Occupational asthma is suspected
- Food allergy or anaphylaxis, as this increases the risk of death
- Symptoms are suggestive of infective or cardiac cause
- Symptoms are suggestive of complications such as bronchiectasis
- Patient has multimorbidity.

Are the symptoms due to asthma?

Perform a careful history and physical examination to identify whether symptoms are typical of asthma, or are more likely due to an alternative diagnosis or comorbidity:

- Dyspnea: COPD, obesity, cardiac disease, deconditioning
- Cough: inducible laryngeal obstruction (also called vocal cord dysfunction, VCD), upper airway cough syndrome (also called post-nasal drip), gastro-esophageal reflux disease (GERD), bronchiectasis, angiotensin-converting enzyme (ACE) inhibitors
- Wheeze: obesity, COPD, tracheobronchomalacia, VCD.

Investigate according to clinical suspicion and age (see Box 1-3, p.27).

How can the diagnosis of asthma be confirmed?

Confirmation of the diagnosis is important, because in 12–50% of people assumed to have severe asthma, asthma is not found to be the correct diagnosis. Perform spirometry, before and after bronchodilator, to assess baseline lung function and seek objective evidence of variable expiratory airflow limitation. If initial bronchodilator responsiveness testing is negative (≤200 mL or ≤12% increase in FEV₁), consider repeating after withholding bronchodilators or when symptomatic, or consider stepping controller treatment up or down before further investigations such as bronchial provocation testing (see Box 1-4, p.30). Check full flow-volume curve to assess for upper airway obstruction. If spirometry is normal or is not available, provide the patient with a peak flow meter and diary for assessing variability; consider bronchial provocation testing if patient is able to withhold bronchodilators (short-acting beta agonist [SABA] for at least 6 hours, LABA for up to 2 days depending on duration of action). Strategies for confirming the diagnosis of asthma in patients already taking ICS-containing treatment are shown in Box 1-4 (p.30).

Airflow limitation may be persistent in patients with long-standing asthma, due to remodeling of the airway walls, or limited lung development in childhood. It is important to document lung function when the diagnosis of asthma is first made. Specialist advice should be obtained if the history is suggestive of asthma but the diagnosis cannot be confirmed by spirometry.
2. Look for factors contributing to symptoms and exacerbations

Systematically consider factors that may be contributing to uncontrolled symptoms or exacerbations, or poor quality of life, and that can be treated. The most important modifiable factors include:

- **Incorrect inhaler technique** (seen in up to 80% patients): ask the patient to show you how they use their inhaler; compare with a checklist or video.

- **Suboptimal adherence** (up to 75% asthma patients): ask empathically about frequency of use (e.g., ‘Many patients don’t use their inhaler as prescribed. In the last 4 weeks, how many days a week have you been taking it — not at all, 1 day a week, 2, 3 or more?’ or, ‘Do you find it easier to remember your inhaler in the morning or the evening?’ (see Box 5-3, p.112). Ask about barriers to medication use, including cost, and concerns about necessity or side-effects. Check dates on inhalers and view dispensing data, if available. Electronic inhaler monitoring, if available, can be helpful in screening for poor adherence, in some cases avoiding the need for biologic therapy.661

- **Comorbidities**: review history and examination for comorbidities that can contribute to respiratory symptoms, exacerbations, or poor quality of life. These include anxiety and depression, obesity, deconditioning, chronic rhinosinusitis, inducible laryngeal obstruction, GERD, COPD, obstructive sleep apnea, bronchiectasis, cardiac disease, and kyphosis due to osteoporosis. Investigate according to clinical suspicion.

- **Modifiable risk factors and triggers**: identify factors that increase the risk of exacerbations, e.g., smoking, environmental tobacco exposure, other environmental exposures at home or work including allergens (if sensitized), indoor and outdoor air pollution, molds and noxious chemicals, and medications such as beta-blockers or non-steroidal anti-inflammatory drugs (NSAIDs). For allergens, check for sensitization using skin prick testing or specific IgE.

- **Regular or over-use of SABAs**: regular SABA use causes beta-receptor down-regulation and reduction in response,662 leading in turn to greater use. Over-use may also be habitual. Dispensing of ≥3 SABA canisters per year (corresponding to average use more than daily) is associated with increased risk of emergency department visit or hospitalization independent of severity.86,87 and dispensing of ≥12 canisters per year (one a month) is associated with substantially increased risk of death.87,89 Risks are higher with nebulized SABA.663

- **Anxiety, depression and social and economic problems**: these are very common in asthma, particularly in difficult asthma656 and contribute to symptoms, impaired quality of life, and poor adherence.

- **Medication side-effects**: systemic effects, particularly with frequent or continuous OCS, or long-term high-dose ICS may contribute to poor quality of life and increase the likelihood of poor adherence. Local side-effects of dysphonia or candidiasismay occur with high-dose or potent ICS, especially if inhaler technique is poor. Consider drug interactions including risk of adrenal suppression with use of P450 inhibitors such as itraconazole.

3. Review and optimize management

Review and optimize treatment for asthma, and for comorbidities and risk factors identified at Stage 2. For more details, see Section 6 (p.117).

- **Provide asthma self-management education**, and confirm that patient has (and knows how to use) a personalized written or electronic asthma action plan. Refer to an asthma educator if available.

- **Optimize asthma medications**: confirm that the inhaler is suitable for the patient; check and correct inhaler technique with a physical demonstration and teach-back method, check inhaler technique again at each visit.664 Address suboptimal adherence, both intentional and unintentional.506 Switch to ICS-formoterol maintenance-and-reliever therapy if available, to reduce the risk of exacerbations.224

- **Consider non-pharmacologic add-on therapy**, e.g., smoking cessation, physical exercise,233 healthy diet, weight loss, mucus clearance strategies, influenza vaccination, breathing exercises, allergen avoidance, if feasible, for patients who are sensitized and exposed. For details see text following Box 3-6, p.57.
• Treat comorbidities and modifiable risk factors identified in Stage 2 of the decision tree, where there is evidence for benefit; however, there is no evidence to support routine treatment of asymptomatic GERD (see p.118). Avoid medications that make asthma worse (beta-blockers including eye-drops, aspirin and other NSAIDs in patients with aspirin-exacerbated respiratory disease, p.128). Refer for management of mental health problems if relevant.

• Consider trial of non-biologic medication added to medium/high dose ICS, e.g., LABA, LAMA, LTRA if not already tried. Note concerns about neuropsychiatric adverse effects with montelukast LTRA.

• Consider trial of high-dose ICS-LABA if not currently used.

4. Review response after approximately 3–6 months

Schedule a review visit to assess the response to the above interventions. Timing of the review visit depends on clinical urgency and what changes to treatment have been made.

When assessing the response to treatment, specifically review:

• Symptom control (symptom frequency, SABA reliever use, night waking due to asthma, activity limitation)
• Exacerbations since previous visit, and how they were managed
• Medication side-effects
• Inhaler technique and adherence
• Lung function
• Patient satisfaction and concerns.

Is asthma still uncontrolled, despite optimized therapy?

YES: if asthma is still uncontrolled, the diagnosis of severe asthma has been confirmed. If not done by now, refer the patient to a specialist or severe asthma clinic if possible.

NO: if asthma is now well controlled, consider stepping down treatment. Start by decreasing/ceasing OCS first (if used), checking for adrenal insufficiency, then remove other add-on therapy, then decrease ICS dose, but do not stop ICS. See Box 4-13 (p.102) for how to gradually down-titrate treatment intensity.

Does asthma become uncontrolled when treatment is stepped down?

YES: if asthma symptoms become uncontrolled or an exacerbation occurs when high-dose treatment is stepped down, the diagnosis of severe asthma has been confirmed. Restore the patient's previous dose to regain good asthma control, and refer to a specialist or severe asthma clinic, if possible, if not done already.

NO: if symptoms and exacerbations remain well controlled despite treatment being stepped down, the patient does not have severe asthma. Continue optimizing management.
INVESTIGATE THE SEVERE ASTHMA PHENOTYPE AND CONSIDER NON-BIOLOGIC THERAPIES

5. Investigate further and provide patient support

Further assessment and management should be by a specialist, preferably in a multidisciplinary severe asthma clinic if available. The team may include a certified asthma educator and health professionals from fields such as speech pathology, otorhinolaryngology, social work and mental health.

What other tests may be considered at the specialist level?

Additional investigations may be appropriate for identifying less-common comorbidities and differential diagnoses contributing to symptoms and/or exacerbations. Tests should be based on clinical suspicion, and may include:

- Blood tests: complete blood count, CRP, IgG, IgA, IgM, IgE, fungal precipitins including Aspergillus
- Allergy testing for clinically relevant allergens: skin prick test or specific IgE, if not already done
- Other pulmonary investigations: diffusing capacity of the lungs for carbon monoxide (DLCO), chest X-ray or high-resolution chest computed tomography (CT)
- Bone density scan, because of risk of osteoporosis with maintenance or frequent OCS or long-term high-dose ICS
- Other directed testing based on clinical suspicion, e.g., antineutrophil cytoplasmic antibodies (ANCA), CT sinuses, B-natriuretic peptide (BNP), echocardiogram.

If blood eosinophils are ≥300/µL, look for and treat non-asthma causes, including parasites (e.g., Strongyloides serology or stool examination), because parasitic infection may be the cause of the blood eosinophilia, and because OCS or biologic therapy in a patient with untreated parasitic infection could potentially lead to disseminated disease. Strongyloides infection is usually asymptomatic.

If hypereosinophilia is found, e.g., blood eosinophils ≥1500/µL, consider causes such as eosinophilic granulomatosis with polyangiitis (EGPA).

Consider need for social/psychological support

Refer patients to support services, where available, to help them deal with the emotional, social and financial burden of asthma and its treatment, including during and after severe exacerbations. Consider the need for psychological or psychiatric referral, including for patients with anxiety and/or depression.

Involve multidisciplinary team care (if available)

Multidisciplinary assessment and treatment of patients with severe asthma increases the identification of comorbidities, and improves outcomes.

Invite patient to enroll in a registry (if available) or clinical trial (if appropriate)

Systematic collection of data will help in understanding the mechanisms and burden of severe asthma. There is a need for pragmatic clinical trials in severe asthma, including studies comparing two or more active treatments. Participants in randomized controlled trials designed for regulatory purposes may not necessarily be representative of patients seen in clinical practice. For example, a registry study found that over 80% of patients with severe asthma would have been excluded from key studies evaluating biologic therapy.

6. Assess the severe asthma phenotype

The next step is to assess the patient’s inflammatory phenotype – is it Type 2 high or low?

What is Type 2 inflammation?

Type 2 inflammation is found in the majority of people with severe asthma. It is characterized by cytokines such as interleukin (IL)-4, IL-5 and IL-13, which are often produced by the adaptive immune system on recognition of allergens. It may also be activated by viruses, bacteria and irritants that stimulate the innate immune system via production of IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) by epithelial cells. Type 2 inflammation is often characterized by elevated
eosinophils or increased fractional exhaled nitric oxide (FeNO), and it may be accompanied by atopy and elevated IgE, whereas non-Type 2 inflammation is often characterized by increased neutrophils.667

In many patients with asthma, Type 2 inflammation rapidly improves when ICS are taken regularly and correctly; these patients do not have severe asthma. In severe asthma, Type 2 inflammation may be relatively refractory to high-dose ICS. It may respond to OCS but their serious adverse effects225,393 mean that alternative treatments should be sought.

In adult patients with uncontrolled asthma despite medium- or high-dose ICS plus LABA or other controllers, a history of exacerbations in the previous year, higher blood eosinophil counts and higher FeNO levels are associated with a greater risk of severe exacerbations.668

Could the patient have refractory or underlying Type 2 inflammation?

The possibility of refractory Type 2 inflammation should be considered if any of the following are found while the patient is taking high-dose ICS or daily OCS:

- Blood eosinophils ≥150/μL, and/or
- FeNO ≥20 ppb, and/or
- Sputum eosinophils ≥2%, and/or
- Asthma is clinically allergen-driven.

Patients requiring maintenance OCS may also have underlying Type 2 inflammation. However, biomarkers of Type 2 inflammation (blood eosinophils, sputum eosinophils and FeNO) are often suppressed by OCS. If possible, therefore, these tests should be performed before starting OCS (a short course, or maintenance treatment), or at least 1–2 weeks after a course of OCS, or on the lowest possible OCS dose.

The above criteria are suggested for initial assessment; those for blood eosinophils and FeNO are based on the lowest levels associated with response to some biologics. They are not the criteria for eligibility for Type 2-targeted biologic therapy, which may differ – see section 8 and local criteria.

Consider repeating blood eosinophils and FeNO up to 3 times (e.g., when asthma worsens, before giving OCS, or at least 1–2 weeks after a course of OCS, or on the lowest possible OCS dose), before assuming asthma is non-Type 2. One study of patients with uncontrolled asthma taking medium- to high-dose ICS-LABA found that 65% had a shift in their blood eosinophil category over 48–56 weeks.669

Why is the inflammatory phenotype assessed on high-dose ICS?

- Most RCT evidence about Type 2 targeted biologics is in such patients.
- Modifiable ICS treatment problems such as poor adherence and incorrect inhaler technique are common causes of uncontrolled Type 2 inflammation.
- Currently, the high cost of biologic therapies generally precludes their widespread clinical use in patients whose symptoms or exacerbations and Type 2 biomarkers are found to respond to ICS when it is taken correctly.

7.1. Consider other treatments if there is no evidence of Type 2 inflammation

If the patient has no evidence of persistent Type 2 inflammation (section 6):

- Review the basics for factors that may be contributing to symptoms or exacerbations: differential diagnosis, inhaler technique, adherence, comorbidities, medication side-effects (Section 2).
- Recommend avoidance of relevant exposures (tobacco smoke, pollution, allergens if sensitized and there is evidence of benefit from withdrawal, irritants, infections). Ask about exposures at home and at work.
- Consider additional diagnostic investigations (if available and not already done): sputum induction to confirm inflammatory phenotype, high resolution chest CT, bronchoscopy to exclude unusual comorbidities or alternative diagnoses such as tracheobronchomalacia or sub-glottic stenosis, functional laryngoscopy for inducible laryngeal obstruction.
Consider a trial of add-on treatment if available and not already tried (but check local eligibility and payer criteria for specific therapies as they may vary from those listed):

- **LAMA**
- Low-dose azithromycin (adults), but first check sputum for atypical mycobacteria, check ECG for long QTc (and re-check after a month on treatment), and consider potential for antibiotic resistance.
- Anti-IL4Ra if taking maintenance OCS (see section 8 for more details)
- Anti-TSLP (thymic stromal lymphopoietin) (but insufficient evidence in patients taking maintenance OCS; see section 8 for more details).
- As a last resort, consider add-on low-dose OCS, but implement strategies with this such as alternate-day treatment to help reduce the dose further and minimize side-effects.

Consider bronchial thermoplasty, with registry enrollment. However, the evidence for efficacy and long-term safety is limited.

Stop ineffective add-on therapies.

Continue to optimize treatment, including inhaler technique, adherence, non-pharmacologic strategies and treating comorbidities (see sections 3 and 10).

7.2. Consider non-biologic options if there is evidence of type 2 inflammation

For patients with elevated Type 2 biomarkers despite high-dose ICS (see section 5), consider non-biologic options first, given the current high cost of biologic therapy:

- **Assess adherence objectively** by monitoring of prescribing or dispensing records, blood prednisone levels, or electronic inhaler monitoring. In one study, suppression of high FeNO after 5 days of directly observed therapy was an indicator of past poor adherence.

- **Consider increasing the ICS dose for 3–6 months**, and review again.

- **Consider add-on non-biologic treatment for specific Type 2 clinical phenotypes** (see Section 6, p.117). For example, for aspirin-exacerbated respiratory disease (AERD), consider add-on LTRA and possibly aspirin desensitization (p.128). For allergic bronchopulmonary aspergillosis (ABPA), consider add-on OCS ± anti-fungal agent (p.129). For chronic rhinosinusitis with or without nasal polyps, consider intensive intranasal corticosteroids; surgical advice may be needed (p.120). For patients with atopic dermatitis, topical steroid or non-steroidal therapy may be helpful. Allergen immunotherapy may sometimes be used in severe asthma, but only after asthma has been well controlled, to minimize the risk of severe adverse reactions. Allergen immunotherapy extracts should only be prepared and administered by clinicians skilled in immunotherapy (see p.104).

7.3. Is Type 2-targeted biologic therapy available and affordable?

If NOT:

- Consider higher dose ICS-LABA, if not used
- Consider other add-on therapy, e.g., LAMA, LTRA, low-dose azithromycin if not used
- As last resort, consider add-on low-dose OCS, but implement strategies to minimize side-effects
- Stop ineffective add-on therapies
- Continue to optimize treatment, including inhaler technique, adherence, non-pharmacologic strategies and treating comorbidities (see Stages 3 and 10).
CONSIDER TYPE 2-TARGETED BIOLOGIC THERAPIES

8. Consider add-on biologic type 2-targeted treatments

If available and affordable, consider an add-on Type 2 targeted biologic for patients with exacerbations and/or poor symptom control despite taking at least high-dose ICS-LABA, and who have allergic or eosinophilic biomarkers or need maintenance OCS. Where relevant, test for parasitic infection, and treat if present, before commencing treatment (see Stage 5).

Consider whether to start first with anti-IgE, anti-IL5/5Ra, anti-IL4Ra or anti-TSLP. When choosing between available therapies, consider the following:

- Does the patient satisfy local payer eligibility criteria?
- Type 2 comorbidities such as atopic dermatitis, nasal polyps
- Predictors of asthma response (see below)
- Cost
- Dosing frequency
- Delivery route (IV or SC; potential for self-administration)
- Patient preference.

Always check local payer eligibility criteria for biologic therapy, as they may vary substantially. However, GINA recommends the use of biologic therapy only for patients with severe asthma, and only after treatment has been optimized. For any biologic therapy, ensure that the manufacturer’s and/or regulator’s instructions for storage, administration and the duration of monitoring post-administration are followed.

Provide the patient with advice about what to do if they experience any adverse effects, including hypersensitivity reactions. Omalizumab injections contain polysorbate, which may induce allergic reactions in some patients. GINA suggests that the first dose of asthma biologic therapy should not be given on the same day as a vaccine such as for COVID-19, so that adverse effects of either can be more easily distinguished.

Provide practical advice for patients, e.g., allow the refrigerated syringe or pen to come to room temperature before injecting the biologic, as this reduces pain.

There is an urgent need for head-to-head comparisons of different biologics in patients eligible for more than one biologic.

Add-on anti-IgE for severe allergic asthma

Regulatory approvals may include: omalizumab for ages ≥6 years, given by SC injection every 2–4 weeks, with dose based on weight and serum IgE. May also be indicated for nasal polyps and chronic spontaneous (idiopathic) urticaria. Self-administration may be an option. Check local regulatory and payer criteria, as they may differ from these.

Mechanism: binds to Fc part of free IgE, preventing binding of IgE to FcƐR1 receptors, reducing free IgE and down-regulating receptor expression.

Eligibility criteria (in addition to criteria for severe asthma) may vary between payers or by age-group, but often include:

- Sensitization to inhaled allergen(s) on skin prick testing or specific IgE, and
- Total serum IgE and body weight within local dosing range, and
- More than a specified number of exacerbations within the last year.

Outcomes: Meta-analysis of RCTs in severe allergic asthma: anti-IgE led to 44% decrease in severe exacerbations, and improved quality of life; improvements in symptom control and lung function were statistically significant but less than clinically important differences. No double-blind randomized controlled trials of OCS-sparing effect. In a meta-analysis
of observational studies in patients with severe allergic asthma, there was a 59% reduction in exacerbation rate, a 41% reduction in the proportion of patients receiving maintenance OCS, and a significant improvement in symptom control. In patients with nasal polyps, omalizumab improved subjective and objective nasal outcomes. Additional details about treatment of chronic rhinosinusitis with nasal polyps (CRSwNP) are found on p.120. A registry study of omalizumab in pregnancy found no increased risk of congenital malformations.

Potential predictors of good asthma response to omalizumab:

- Baseline IgE level does not predict likelihood of response.
- In a post-hoc analysis of one clinical trial, a greater decrease in exacerbations was observed (compared with placebo) with blood eosinophils ≥260/μL or FeNO ≥19.5 ppb (these criteria representing their median value in that study) but in two large observational studies, exacerbations were reduced with both low or high blood eosinophils or with both low or high FeNO.
- Childhood-onset asthma
- Clinical history suggesting allergen-driven symptoms.

Adverse effects: injection site reactions, anaphylaxis in approximately 0.2% patients.

Suggested initial trial: at least 4 months

Add-on anti-IL5 or anti-IL5Rα for severe eosinophilic asthma

Regulatory approvals may include: For ages ≥12 years: mepolizumab (anti-IL5), 100 mg by SC injection every 4 weeks, or benralizumab (anti-IL5 receptor α), 30 mg by SC injection every 4 weeks for 3 doses then every 8 weeks. For ages ≥18 years: reslizumab (anti-IL5), 3 mg/kg by IV infusion every 4 weeks. For ages 6–11 years, mepolizumab (anti-IL5), 40 mg by SC injection every 4 weeks. Mepolizumab may also be indicated for eosinophilic granulomatosis with polyangiitis (EGPA), hypereosinophilic syndrome and chronic rhinosinusitis with nasal polyps. Self-administration may be an option. Check local regulatory and payer criteria, as they may differ from these.

Mechanism: mepolizumab and reslizumab bind circulating IL-5; benralizumab binds to IL-5 receptor alpha subunit leading to apoptosis (cell death) of eosinophils.

Eligibility criteria (in addition to criteria for severe asthma): these vary by product and between payers, but usually include:

- More than a specified number of severe exacerbations in the last year, and
- Blood eosinophils above locally specified level (e.g., ≥150 or ≥300/μL). There is sometimes a different eosinophil cut-point for patients taking OCS.

Outcomes: Meta-analysis of RCTs in severe asthma patients with exacerbations in the last year, with varying eosinophil criteria: anti-IL5 and anti-IL5Rα led to 47–54% reduction in severe exacerbations. Improvements in lung function and symptom control were statistically significant, but less than clinically important differences. There was a clinically important improvement in quality of life with mepolizumab. All anti-IL5/5Rα biologics reduced blood eosinophils; almost completely with benralizumab. In post hoc analyses, clinical outcomes with mepolizumab or benralizumab were similar in patients with and without an allergic phenotype. In patients taking OCS, median OCS dose was able to be reduced by approximately 50% with mepolizumab or benralizumab compared with placebo. In urban children aged 6 years and older with eosinophilic exacerbation-prone asthma, an RCT showed a reduction in the number of exacerbations with subcutaneous mepolizumab versus placebo. No differences were seen in lung function, a composite asthma score (CASI), or physician–patient global assessment. In patients with nasal polyps, mepolizumab improved subjective and objective outcomes and reduced the need for surgery, and in patients with nasal polyps and severe eosinophilic asthma, benralizumab improved subjective outcomes for both conditions and improved quality of life. See p.120 for more details about treatment of nasal polyps.

Potential predictors of good asthma response to anti-IL5 or anti-IL5Rα:

- Higher blood eosinophils (strongly predictive).
• Higher number of severe exacerbations in previous year (strongly predictive) 685
• Adult-onset asthma 686
• Nasal polyps 682
• Maintenance OCS at baseline 682
• Low lung function (FEV1 < 65% predicted) in one study 687

Adverse effects: In adults, injection site reactions, anaphylaxis rare, adverse events generally similar between active and placebo. In children, more skin/subcutaneous tissue and nervous system disorders (e.g., headache, dizziness, syncope) were seen with mepolizumab than placebo. 381

Suggested initial trial: at least 4 months

Add-on anti-IL4Rα for severe eosinophilic/Type 2 asthma or patients requiring maintenance OCS

Regulatory approvals may include: For ages ≥12 years: dupilumab (anti-IL4 receptor α), 200 mg or 300 mg by SC injection every 2 weeks for severe eosinophilic/Type 2 asthma; 300 mg by SC injection every 2 weeks for OCS-dependent severe asthma or if there is concomitant moderate/severe atopic dermatitis. For children 6–11 years with severe eosinophilic/Type 2 asthma by SC injection with dose and frequency depending on weight. May also be indicated for treatment of skin conditions including moderate-to-severe atopic dermatitis, chronic rhinosinusitis with nasal polyps and eosinophilic esophagitis. Self-administration may be an option. Check local regulatory and payer criteria, as they may differ from these.

Mechanism: binds to interleukin-4 (IL-4) receptor alpha, blocking both IL-4 and IL-13 signaling

Eligibility criteria (in addition to criteria for severe asthma): these may vary between payers or by age-group, but often include:
• More than a specified number of severe exacerbations in the last year, and
• Type 2 biomarkers above a specified level (e.g., blood eosinophils ≥150/μL and ≤1500/μL, or FeNO ≥25 ppb) OR requirement for maintenance OCS.

Outcomes: Meta-analysis of RCTs in patients with uncontrolled severe asthma (ACQ-5 ≥1.5) and at least one exacerbation in the last year: anti-IL4Rα led to 56% reduction in severe exacerbations; improvements in quality of life, symptom control and lung function were statistically significant, 385 but less than the clinically important differences. In a post hoc analysis, clinical outcomes were similar in patients with allergic and non-allergic phenotype at baseline 688 In patients with OCS-dependent severe asthma, without minimum requirements for blood eosinophil count or FeNO, the median reduction in OCS dose with anti-IL4Rα versus placebo was 50%. 689 In follow-up, changes were maintained through 2 years of follow-up. 690 In children 6–11 years with eosinophilic/Type 2 asthma, dupilumab reduced severe exacerbation rate and increased lung function; children taking maintenance OCS were excluded. 386 In patients with chronic rhinosinusitis with nasal polyps, dupilumab reduced the size of nasal polyps, improved nasal symptoms and reduced the need for OCS or sinus surgery. 561,691 See p.120 for more details about nasal polyps.

Potential predictors of good asthma response to dupilumab:
• Higher blood eosinophils (strongly predictive) 383
• Higher FeNO (strongly predictive) 383

Adverse effects: injection-site reactions; transient blood eosinophilia (occurs in 4–13% of patients); rare cases of eosinophilic granulomatosis with polyangiitis (EGPA) may be unmasked following reduction/cessation of OCS treatment on dupilumab. Anti-IL4Ra is not suggested for patients with baseline or historic blood eosinophils >1,500 cells/μL because of limited evidence (such patients were excluded from Phase III trials).

Suggested initial trial: at least 4 months
Add-on anti-TSLP for severe asthma

Regulatory approvals may include: For ages ≥12 years: tezepelumab (anti-TSLP), 210 mg by SC injection every 4 weeks. Self-administration may be an option. Check local regulatory and payer criteria, as they may differ from these.

Mechanism: tezepelumab binds circulating TSLP, a bronchial epithelial cell-derived alarmin implicated in multiple downstream processes involved in asthma pathophysiology.

Eligibility criteria (in addition to criteria for severe asthma): these vary between payers, but usually include:
- Severe exacerbations in the last year.

Anti-TSLP may also be considered in patients with no elevated Type 2 markers (Stage 7.1).

Outcomes: In two RCTs in severe asthma patients with severe exacerbations in the last year, anti-TSLP led to 30–70% reduction in severe exacerbations, and improved quality of life, lung function and symptom control, irrespective of allergic status.387,388 There was a clear correlation between higher baseline blood eosinophils or FeNO and better clinical outcomes.388 In patients taking maintenance OCS, anti-TSLP did not lead to a reduced OCS dose compared with placebo.389

Potential predictors of good asthma response to anti-TSLP:
- Higher blood eosinophils (strongly predictive)
- Higher FeNO levels (strongly predictive).

Adverse effects: injection site reactions, anaphylaxis is rare, adverse events generally similar between active and placebo groups.

Suggested initial trial: at least 4 months

Review response to an initial trial of add-on Type 2-targeted therapy
- At present, there are no well-defined criteria for a good response, but consider exacerbations, symptom control, lung function, side-effects, treatment intensity (including OCS dose), and patient satisfaction.
- If the response is unclear, consider extending the trial to 6–12 months.
- If there is no response, stop the biologic therapy, and consider switching to a trial of a different Type 2-targeted therapy, if available and the patient is eligible. Also consider the patient’s biomarkers (interval and during exacerbations, if available), and response of any comorbid Type 2 conditions (atopic dermatitis, nasal polyps etc). Review response as above.
ASSESS, MANAGE AND MONITOR ONGOING SEVERE ASTHMA TREATMENT

9. Review response and implications for treatment

Review response to add-on biologic therapy after 3–4 months, and every 3–6 months for ongoing care, including:

- Asthma: symptom control, both recent e.g., with validated tools such as Asthma Control Test (4 weeks) and Asthma Control Questionnaire (ACQ-5, 1 week), and over the whole period since last review, frequency and severity of exacerbations (including whether OCS were needed), lung function
- Any change in relevant Type 2 comorbidities, e.g., nasal polyps, atopic dermatitis
- Medications: treatment intensity, including courses of OCS and dose of any maintenance OCS, side-effects, affordability
- Patient satisfaction.

If the patient has had a good response to Type 2 targeted therapy:

Re-evaluate the need for each asthma medication every 3–6 months, but emphasize to patients and their primary care physician that they should not completely stop ICS-containing therapy. Base the order of reduction or cessation of add-on treatments on potential adverse effects, the observed benefit when the medication was started, patient risk factors, cost, and patient satisfaction. Minimizing the use of OCS is a very high priority.

After reducing/ceasing any medication, confirm asthma stability before making any further treatment changes.

For oral treatments, gradually decrease or stop OCS first, because of their significant adverse effects. Tapering of OCS in severe asthma may be supported by internet-based monitoring of symptom control and FeNO. Monitor patients for risk of adrenal insufficiency by measuring morning serum cortisol, and provide patient and primary care physician with advice about the need for extra corticosteroid doses during injury, illness or surgery for up to 6 months after cessation of long-term OCS. Continue to assess for presence of osteoporosis, and review need for preventative strategies including bisphosphonates.

If asthma remains well controlled, consider ceasing other therapies, based on the above considerations.

For inhaled treatments, consider ceasing add-on inhaled therapy such as LAMA before reducing ICS-LABA dose. Reduction in dose of ICS-containing therapy may be considered after asthma has been well controlled on biologic therapy for at least 3–6 months and stability has been confirmed after any other medication changes. However, do not completely stop ICS-containing therapy. Previous advice based on consensus was to continue at least medium-dose ICS-LABA. In an open-label study in patients with good symptom control on anti-IL5Rα, most of those randomized to MART with ICS-formoterol were able to have their maintenance ICS-formoterol dose gradually reduced (and in some cases stopped, continuing as-needed-only ICS-formoterol) without exacerbations. However, patients who ceased maintenance treatment demonstrated evidence of under-dosing with ICS, with reduction in lung function and increase in FeNO, suggesting that in patients with severe asthma, maintenance ICS-containing therapy should not be stopped completely. Any reduction in ICS dose should be considered as a treatment trial and the previous dose reinstated if deterioration occurs (Box 4-13, p.102). Patients should be reminded of the importance of continuing their maintenance ICS-containing treatment.

For biologic treatments, current consensus advice is that, generally, for a patient with a good response, a trial of withdrawal of the biologic should not be considered until after at least 12 months of treatment, and only if asthma remains well controlled on medium-dose ICS-containing therapy, and (for allergic asthma) there is no further exposure to a previous well-documented allergic trigger. There are few studies of cessation of biologic therapy, in these studies, symptom control worsened and/or exacerbations recurred for many (but not all) patients after cessation of the biologic. For example, in a double-blind randomized controlled trial, significantly more patients who stopped mepolizumab experienced a severe exacerbation within 12 months compared with those who continued treatment. In this study, there was a small increase in ACQ-5 but no significant difference in symptom control between groups. In adults, long-term safety over 5 or more years of treatment has been reported for several biologics, with shorter follow-up to date for others.
If the patient has NOT had a good response to any Type 2-targeted therapy:

Stop the biologic therapy.

Review the basics for factors contributing to symptoms, exacerbations and poor quality of life (see Section 2): diagnosis/differential diagnosis, inhaler technique, adherence, modifiable risk factors and triggers including smoking and other environmental exposures at home or work, comorbidities including obesity, medication side-effects or drug interactions, socio-economic and mental health issues.

Consider additional investigations (if not already done): high resolution chest CT, induced sputum to confirm inflammatory phenotype, consider bronchoscopy for alternative or additional diagnoses, consider referral if available, including for diagnosis of alternative conditions.

Reassess treatment options (if not already done), such as:

- Add-on low-dose azithromycin373,374 (adults only; first check sputum for atypical mycobacteria and check ECG for long QTc (and re-check after a month on treatment); consider potential for antibiotic resistance)
- As last resort, consider add-on low-dose maintenance OCS, but implement strategies such as alternate-day therapy; add bisphosphonate to minimize side-effects on bones,395 and alert patient to the need for additional corticosteroid therapy during illness or surgery.
- Consider bronchial thermoplasty (+ registry).

Stop ineffective add-on therapies, but do not completely stop ICS.

10. Continue collaborative optimization of patient care

Ongoing management of a patient with severe asthma involves a collaboration between the patient, the primary care physician, specialist(s), and other health professionals, to optimize clinical outcomes and patient satisfaction.

Continue to review the patient every 3–6 months including:

- Clinical asthma measures (symptom control, exacerbations, lung function)
- Comorbidities
- The patient’s risk factors for exacerbations
- Treatments (check inhaler technique and adherence, review need for add-on treatments, assess side-effects including of OCS, and optimize comorbidity management and non-pharmacologic strategies)
- The patient’s social and emotional needs.

The optimal frequency and location of review (primary care physician or specialist) will depend on the patient’s asthma control, risk factors and comorbidities, and their confidence in self-management, and may depend on local payer requirements and availability of specialist physicians.

Communicate regularly with the family physician and other members of the health care team about:

- Outcome of review visits (as above)
- Patient concerns
- Action plan for worsening asthma or other risks
- Changes to medications (asthma and non-asthma), potential side-effects
- Indications and contact details for expedited review.
9. Management of worsening asthma and exacerbations in adults, adolescents and children 6–11 years

KEY POINTS

Terminology
- Exacerbations represent an acute or sub-acute worsening in symptoms and lung function from the patient’s usual status, or in some cases, a patient may present for the first time during an exacerbation.
- The terms ‘episodes’, ‘attacks’ and ‘acute severe asthma’ are also often used, but they have variable meanings. The term ‘flare-up’ is preferable for use in discussions with most patients.
- Patients who are at increased risk of asthma-related death should be identified, and flagged for more frequent review.

Written asthma action plans
- All patients should be provided with a written (i.e., printed, digital or pictorial) asthma action plan appropriate for their age, their current treatment regimen and their reliever inhaler (short-acting beta2 agonist [SABA] or combination inhaled corticosteroids [ICS]-formoterol), their level of asthma control, and their health literacy, so they know how to recognize and respond to worsening asthma.
- On the action plan, state when and how to change reliever and/or maintenance medications, use oral corticosteroids (OCS) if needed, and access medical care if symptoms fail to respond to treatment.
- Advise patients who have a history of rapid deterioration to go to an acute care facility or see their doctor immediately their asthma starts to worsen.
- Base the action plan on changes in symptoms or (only in adults) peak expiratory flow (PEF).

Management of exacerbations in a primary care or acute care facility
- Assess exacerbation severity from the degree of dyspnea, respiratory rate, pulse rate, oxygen saturation and lung function, while starting SABA and oxygen therapy. Infection control procedures should be followed.
- Arrange immediate transfer to an acute care facility if there are signs of severe exacerbation, or to intensive care if the patient is drowsy, confused, or has a silent chest. During transfer, give inhaled SABA and ipratropium bromide, controlled oxygen and systemic corticosteroids.
- Start treatment with repeated administration of SABA (in most patients, by pressurized metered-dose inhaler [pMDI] and spacer), early introduction of oral corticosteroids, and controlled flow oxygen if available. Review response of symptoms, oxygen saturation and lung function after 1 hour. Give ipratropium bromide only for severe exacerbations. Consider intravenous magnesium sulfate for patients with severe exacerbations not responding to initial treatment.
- Do not routinely request a chest X-ray, and do not routinely prescribe antibiotics for asthma exacerbations.
- Decide about hospitalization based on the patient’s clinical status, lung function, response to treatment, recent and past history of exacerbations, and ability to manage at home.

Discharge management
- Arrange ongoing treatment before the patient goes home. This should include starting ICS-containing controller treatment or stepping up the dose of existing ICS-containing treatment for 2–4 weeks, and reducing reliever medication to as-needed use.
- If the patient was using an anti-inflammatory reliever (e.g., ICS-formoterol) before the exacerbation and this was replaced with SABA during an emergency department or hospital stay, they should resume taking as-needed anti-inflammatory reliever instead of SABA reliever before or on discharge. If the patient was previously using maintenance-and-reliever therapy (MART) with ICS-formoterol, they should resume MART. If the patient was...
previously using as-needed-only ICS-formoterol as needed, they should start MART, i.e., add maintenance ICS-formoterol. There is no need to prescribe or provide SABA for patients prescribed ICS-formoterol reliever.

- For adults and adolescents using SABA as reliever before the exacerbation, consider switching to maintenance-and-reliever therapy with ICS-formoterol (MART, Track 1, p.77), to reduce the risk of future exacerbations.

Arrange early follow-up after any exacerbation, regardless of where it was managed. At follow-up:

- Review the patient’s symptom control and risk factors for further exacerbations.
- Prescribe ICS-containing controller therapy to reduce the risk of further exacerbations. If already taking ICS-containing therapy, continue increased doses for 2–4 weeks.
- Provide a written asthma action plan and, where relevant, advice about avoiding exacerbation triggers
- Check inhaler technique and adherence.

For management of asthma exacerbations in children 5 years and younger, see Section 12 (p.196).

OVERVIEW

Definition of asthma exacerbations

Exacerbations of asthma are episodes characterized by a progressive increase in symptoms of shortness of breath, cough, wheezing or chest tightness and progressive decrease in lung function, i.e., they represent a change from the patient’s usual status that is sufficient to require a change in treatment. Exacerbations may occur in patients with a pre-existing diagnosis of asthma or, occasionally, as the first presentation of asthma.

What triggers asthma exacerbations?

Exacerbations usually occur in response to exposure to an external agent (e.g., viral upper respiratory tract infection, pollen or pollution) and/or poor adherence with ICS-containing medication; however, a subset of patients present more acutely and without exposure to known risk factors. Severe exacerbations can occur in patients with mild or well-controlled asthma symptoms. Box 2-2B (p.37) lists factors that increase a patient’s risk of exacerbations, independent of their level of symptom control.

Common exacerbation triggers include:

- Viral respiratory infections, e.g., rhinovirus, influenza, adenovirus, pertussis, respiratory syncytial virus
- Allergen exposure e.g., grass pollen and other pollens, soybean dust, fungal spores
- Food allergy
- Outdoor air pollution
- Seasonal changes and/or returning to school in fall (autumn)
- Poor adherence with ICS
- Epidemics of severe asthma exacerbations may occur suddenly, putting high pressure on local health system responses. Such epidemics have been reported in association with springtime thunderstorms and either rye grass pollen or fungal spores, and with environmental exposure to soybean dust.

Identifying patients at risk of asthma-related death

In addition to factors known to increase the risk of asthma exacerbations (Box 2-2, p.37), some features are specifically associated with an increase in the risk of asthma-related death (Box 9-1, p.160). The presence of one or more of these risk factors should be quickly identifiable in the clinical notes, and these patients should be encouraged to seek urgent medical care early in the course of an exacerbation.
Box 9-1. Factors associated with increased risk of asthma-related death

- A history of near-fatal asthma requiring intubation and mechanical ventilation
- Hospitalization or emergency care visit for asthma in the past year
- Currently using or having recently stopped using oral corticosteroids (a marker of event severity)
- Not currently using inhaled corticosteroids
- Over-use of short-acting beta2 agonists (SABAs), especially use of an average of more than one canister of salbutamol (or equivalent) per month, or using nebulized SABA
- Poor adherence with ICS-containing medications and/or poor adherence with (or lack of) a written asthma action plan
- A history of psychiatric disease or psychosocial problems
- Food allergy in a patient with asthma
- Several comorbidities including pneumonia, diabetes and arrhythmias were independently associated with an increased risk of death after hospitalization for an asthma exacerbation

See list of abbreviations (p.11)

Terminology about exacerbations

The academic term ‘exacerbation’ is commonly used in scientific and clinical literature, although hospital-based studies more often refer to ‘acute severe asthma’. However, the term ‘exacerbation’ is not suitable for use in clinical practice, as it is difficult for many patients to pronounce and remember. The term ‘flare-up’ is simpler, and conveys the sense that asthma is present even when symptoms are absent. The term ‘attack’ is used by many patients and healthcare providers but with widely varying meanings, and it may not be perceived as including gradual worsening. In pediatric literature, the term ‘episode’ is commonly used, but understanding of this term by parent/caregivers is not known.

DIAGNOSIS OF EXACERBATIONS

Exacerbations represent a change in symptoms and lung function from the patient’s usual status. The decrease in expiratory airflow can be quantified by lung function measurements such as PEF or forced expiratory volume in 1 second (FEV₁) compared with the patient’s previous lung function or predicted values. In the acute setting, these measurements are more reliable indicators of the severity of the exacerbation than symptoms. The frequency of symptoms may, however, be a more sensitive measure of the onset of an exacerbation than PEF. Consider the possibility of pertussis in a patient with an atypical exacerbation presentation, with predominant cough.

A minority of patients perceive airflow limitation poorly and can experience a significant decline in lung function without a change in symptoms. This especially affects patients with a history of near-fatal asthma and also appears to be more common in males. Regular PEF monitoring may be considered for such patients.

Severe exacerbations are potentially life-threatening, and their treatment requires careful assessment and close monitoring. Patients with severe exacerbations should be advised to see their healthcare provider promptly or, depending on the organization of local health services, to proceed to the nearest facility that provides emergency access for patients with acute asthma.
SELF-MANAGEMENT OF EXACERBATIONS WITH A WRITTEN ASTHMA ACTION PLAN

All patients with asthma, and parents/caregivers of children with asthma, should be provided with guided self-management education as described in Section 5 (p.108). The definition of guided self-management education includes monitoring of symptoms and/or lung function, a written asthma action plan, and regular review by a health professional. (For children 5 years and younger, see Section 11, p.185). A written (i.e., documented) asthma action plan may be printed, digital, or pictorial, to suit the patient’s needs and literacy.

A written asthma action plan helps patients to recognize and respond appropriately to worsening asthma. It should include specific instructions for the patient about changes to reliever and/or maintenance medications, when and how to use OCS if needed (Box 9-2, p.162) and when and how to access medical care.

The criteria for initiating an increase in maintenance medication will vary from patient to patient. In studies that evaluated an increase in maintenance ICS-containing treatment, this was usually initiated when there was a clinically important change from the patient’s usual level of asthma control, for example, if asthma symptoms were interfering with normal activities, or PEF had fallen by >20% for more than 2 days.

For patients prescribed an anti-inflammatory reliever (as-needed combination ICS-formoterol or ICS-SABA), this provides a small extra dose of ICS as well as a rapid-acting bronchodilator without delay whenever the reliever is used, as the first step in the patient’s action plan; this approach reduces the risk of progressing to severe exacerbation and need for oral corticosteroids. In the case of as-needed ICS-formoterol, both the ICS and the formoterol appear to contribute to the reduction in severe exacerbations compared with using a SABA reliever. See Box 4-8 (p.84) for more details about as-needed ICS-formoterol, including medications and dosages.

A specific action plan template is available for patients prescribed maintenance-and-reliever therapy with ICS-formoterol; it can also be modified for patients prescribed as-needed-only ICS-formoterol.
Box 9-2. Self-management of worsening asthma in adults and adolescents with a written asthma action plan

<table>
<thead>
<tr>
<th>Medication</th>
<th>Short-term change (1–2 weeks) for worsening asthma</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase usual reliever:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-dose ICS-formoterol†</td>
<td>Increase frequency of as-needed low-dose ICS-formoterol (for patients prescribed this as-needed only, or with maintenance ICS-formoterol).† See Box 4-8 (p.84) for details of medications and doses.</td>
<td>A</td>
</tr>
<tr>
<td>Short-acting beta₂ agonist (SABA)</td>
<td>Increase frequency of SABA use. For pMDI, add spacer</td>
<td>A A</td>
</tr>
<tr>
<td>Combination ICS-SABA</td>
<td>Increase frequency of as-needed ICS-SABA# (see below and p.88)</td>
<td>B</td>
</tr>
<tr>
<td>Increase usual maintenance treatment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance-and-reliever ICS-formoterol (MART)†</td>
<td>Continue usual maintenance dose of ICS-formoterol and increase ICS-formoterol reliever doses as needed.† See Box 4-8 (p.84) for details.</td>
<td>A</td>
</tr>
<tr>
<td>Maintenance ICS with SABA as reliever</td>
<td>Consider quadrupling ICS dose.</td>
<td>B</td>
</tr>
<tr>
<td>Maintenance ICS-formoterol with SABA as reliever†</td>
<td>Consider quadrupling maintenance ICS-formoterol.†</td>
<td>B</td>
</tr>
<tr>
<td>Maintenance ICS plus other LABA with SABA as reliever</td>
<td>Step up to higher dose formulation of ICS plus other LABA, if available. In adults, consider adding a separate ICS inhaler to quadruple ICS dose.</td>
<td>B D</td>
</tr>
<tr>
<td>Add oral corticosteroids (OCS) and contact doctor; review before ceasing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCS (prednisone or prednisolone)</td>
<td>Add OCS for severe exacerbations (e.g., PEF or FEV₁ <60% personal best or predicted), or patient not responding to treatment over 48 hours. Once started, morning dosing is preferable. Adults: prednisolone* 40–50 mg/day, usually for 5–7 days. Tapering is not needed if OCS are prescribed for less than 2 weeks.</td>
<td>A D B</td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11). *or equivalent dose of prednisone. † ICS-formoterol as-needed for relief of symptoms (‘AIR-only’), or as part of maintenance-and-reliever therapy (MART) with low-dose combination budesonide-formoterol or beclometasone (BDP)-formoterol. See Box 4-8 (p.84) for details of medications and doses. The maximum recommended total dose of budesonide-formoterol in a single day for adults and adolescents gives 72 mcg formoterol (54 mcg delivered dose); GINA suggests that, for BDP-formoterol, the maximum total metered dose should be the same (maximum total 12 inhalations in a day). # Combination budesonide-salbutamol (albuterol) 2 puffs of 100/100 mcg (delivered dose 80/90 mcg) maximum 6 times in a day. See text below for more details about action plan options in adults, adolescents and children.
Treatment options for written asthma action plans – relievers

Inhaled combination ICS-formoterol reliever

In adults and adolescents, use of as-needed combination low-dose ICS-formoterol for symptom relief (without maintenance treatment) reduced the risk of severe exacerbations requiring OCS or requiring emergency department visit or hospitalization by 65% compared with SABA-only treatment. It also reduced the risk of needing an emergency department visit or hospitalization by 37% compared with daily ICS plus as-needed SABA. After a day of even small increased doses of ICS-formoterol, the risk of severe exacerbation in the following 3 weeks was reduced compared with using the same doses of SABA alone. Details of the evidence are found on p.79 and p.81.

In adults, adolescents and children 6–11 years, maintenance-and-reliever therapy (MART) with very low- or low-dose ICS-formoterol reduced the risk of severe exacerbations compared with the same or higher dose of ICS or ICS-LABA, with similar symptom control. Details about the evidence are found on p.98 and p.99.

Information about medications and doses for use of as-needed ICS-formoterol is summarized in Box 4-8 (p.84). For adults and adolescents, the evidence is with use of budesonide-formoterol 200/6 mcg metered dose (160/4.5 mcg delivered dose) by dry-powder inhaler and, for children aged 6–11 prescribed MART, budesonide-formoterol 100/6 mcg metered dose (80/4.5 mcg delivered dose) by dry-powder inhaler. Patients prescribed ICS-formoterol as their reliever (with or without maintenance ICS-formoterol) should take 1 inhalation of their ICS-formoterol reliever whenever needed for symptom relief; for formulations with 3 mcg [2.25 delivered dose] of formoterol per inhalation, 2 inhalations should be taken whenever needed for symptom relief. If necessary, an extra dose can be taken a few minutes later. Additional doses are taken when symptoms recur, even if this is within 4 hours, but the maximum total recommended dose in any single day for adults and adolescents (as-needed plus maintenance doses, if used) is 12 inhalations for budesonide-formoterol (total 72 mcg formoterol [54 mcg delivered dose]). Based on extensive evidence for efficacy and safety of budesonide-formoterol up to this maximum dose in any day, GINA suggests that the same maximum total dose in a single day should also apply to beclometasone-formoterol. For children, budesonide-formoterol can, if needed, be used up to a total (as-needed and maintenance doses, if used) of 8 inhalations in any day. This is the maximum total of as-needed doses and maintenance doses, if used. See Box 4-8 (p.84) for specific details.

If the patient is rapidly worsening, or has failed to respond to an increase in as-needed doses of ICS-formoterol over 2–3 days, they should contact their healthcare provider or seek medical assistance.

Inhaled combination ICS-SABA reliever

For adults prescribed as-needed combination ICS-SABA reliever with maintenance ICS-containing therapy, the recommended dose is 2 inhalations of budesonide-salbutamol [albuterol] 100/100 mcg metered dose (80/90 mcg delivered dose) as needed, a maximum of 6 times in a day. Overall, in patients on Step 3–5 therapy, this reduced the risk of severe exacerbations by 26% compared with using a SABA reliever, with the greatest benefit seen in patients taking maintenance low-dose ICS-LABA or medium-dose ICS. There is only one study to date about use of as-needed combination ICS-SABA alone, i.e., without maintenance ICS or ICS-LABA (see p.98).

If the patient is rapidly worsening, or needs repeated doses of as-needed ICS-SABA reliever over 1–2 days, they should contact their healthcare provider or seek medical assistance.

Inhaled SABA reliever

For patients prescribed a SABA bronchodilator reliever, repeated dosing provides temporary relief until the cause of the worsening symptoms passes or increased ICS-containing treatment has had time to take effect. However, use of SABA reliever is less effective in preventing progression to severe exacerbation requiring OCS than use of low-dose ICS formoterol reliever, either with or without daily maintenance ICS-containing treatment, or than combination ICS-SABA reliever (see Section 4, p.67).

The need for repeated doses of SABA over more than 1–2 days signals the need to review, and possibly increase, ICS containing treatment if this has not already been done. This is particularly important if there has been a lack of response.
Treatment options for written asthma action plans – maintenance medications

Maintenance-and-reliever therapy (MART) with combination low-dose ICS-formoterol

In adults and adolescents, the combination of a rapid-onset LABA (formoterol) and low-dose ICS (budesonide or beclometasone) in a single inhaler as both the maintenance and the reliever medication was effective in improving asthma symptom control, and it reduced exacerbations requiring OCS, and hospitalizations compared with the same or higher dose of ICS or ICS-LABA with as-needed SABA reliever (Evidence A). This regimen was also effective in reducing exacerbations in children aged 4–11 years (Evidence B).

For adults and adolescents prescribed MART, the recommended maximum total dose of formoterol in 24 hours with budesonide-formoterol is 72 mcg (delivered dose 54 mcg), with extensive evidence from large studies of its safety and efficacy up to this frequency in a single day (as above). Based on this evidence, GINA suggests that the same maximum total dose in a single day should apply to beclometasone-formoterol (See Box 4-8, p.84). This approach should not be attempted with other combination ICS-LABA medications with a slower-onset LABA (e.g., ICS-salmeterol), or that lack the dose response and safety profile that is required for a maintenance-and-reliever regimen.

The benefit of the MART regimen in reducing the risk of severe exacerbations requiring OCS appears to be due to the increase in doses of both the ICS and the formoterol at a very early stage of worsening asthma.

In an action plan for patients prescribed maintenance-and-reliever therapy with ICS-formoterol, the maintenance dose does not normally need to be increased. Instead, the patient increases their as-needed doses of ICS-formoterol. More details of medications and doses for different age-groups are available in Box 4-8, p.84. Examples of action plans customized for MART are available online.

Other ICS and ICS-LABA maintenance treatment regimens plus as-needed SABA

In a systematic review, self-management studies in which the ICS dose was at least doubled were associated with improved asthma outcomes and reduced healthcare utilization (Evidence A). In placebo-controlled trials, temporarily doubling the dose of ICS was not effective (Evidence A); however, the delay before increasing the ICS dose (mean 5–7 days) may have contributed. Some studies in adults and young children have reported that higher ICS doses might help prevent worsening asthma progressing to a severe exacerbation. In a randomized controlled trial in primary care with patients aged ≥16 years, those who quadrupled their ICS dose (to average of 2000 mcg/day beclometasone dipropionate (BDP) equivalent) after their PEF fell were significantly less likely to require OCS. In an open-label primary care randomized controlled trial of adult and adolescent patients using ICS with or without LABA, early quadrupling of ICS dose (to average 3200 mcg/day BDP equivalent) was associated with a modest reduction in prescribing of OCS. However, a double-blind placebo-controlled study in children 5–11 years with high adherence to low-dose ICS found no difference in the rate of severe exacerbations requiring OCS if maintenance ICS was quintupled (to 1600 mcg BDP equivalent) versus continuing maintenance low-dose therapy. Given the shape of the ICS dose-response curve, little benefit may be seen from increasing maintenance ICS when background adherence is high, as in this study.

In addition, in several of the studies evaluating ICS increases, a pre-specified level of deterioration in symptoms (± lung function) had to be reached before the extra ICS could be started. This may help to explain the greater reduction in severe exacerbations seen with maintenance-and-reliever therapy with ICS-formoterol, where there is no lag before the doses of both ICS and formoterol are increased.

In adult with an acute deterioration, high-dose ICS for 7–14 days (500–1600 mcg BDP-HFA standard-particle equivalent) had an equivalent benefit to a short course of OCS (Evidence A). For adults taking combination ICS-LABA with as-needed SABA, the ICS dose may be increased by adding a separate ICS inhaler (Evidence D).

Leukotriene receptor antagonists

If patients are using a leukotriene receptor antagonist (LTRA) as their only controller, there are no specific studies about how to manage worsening asthma. Clinicians’ judgment should be used (Evidence D). For ongoing treatment, the patient should be switched to an ICS-containing controller to reduce the risk of further exacerbations.
Oral corticosteroids

For most patients, the written asthma action plan should provide instructions for when and how to commence OCS. Typically, a short course of OCS is used (e.g., for adults, 40–50 mg/day usually for 5–7 days, Evidence B) for patients who:

- Fail to respond to an increase in reliever and ICS-containing maintenance medication for 2–3 days
- Deteriorate rapidly or who have a PEF or FEV₁ <60% of their personal best or predicted value
- Have worsening asthma and a history of sudden severe exacerbations.

For children 6–11 years, the recommended dose of prednisone is 1–2 mg/kg/day to a maximum of 40 mg/day (Evidence B), usually for 3–5 days. Patients should be advised about common side-effects, including sleep disturbance, increased appetite, reflux, and mood changes. Patients should contact their doctor if they start taking OCS (Evidence D).

Even occasional short courses of OCS are associated with significant short-term and cumulative long-term adverse effects, with a pronounced dose response. For all patients, therefore, asthma management should be optimized to reduce the risk of further exacerbations requiring OCS (Box X). This includes optimizing ICS-containing therapy (with a switch for adults and adolescents to Track 1 with ICS-formoterol if available), treating modifiable risk factors and comorbidities, using relevant non-pharmacologic strategies, and providing education and skills training including a written asthma action plan (see Section 5, p.108 for details).

Box 9-3. Optimizing asthma treatment to minimize need for OCS

<table>
<thead>
<tr>
<th>Optimize asthma treatment to minimize cumulative adverse effects of OCS use</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCS can be life-saving during severe asthma exacerbations, but there is increasing awareness of the risks of repeated courses.</td>
</tr>
<tr>
<td>In adults, short-term adverse effects of OCS include sleep disturbance, increased appetite, reflux, mood changes, sepsis, pneumonia, and thromboembolism.</td>
</tr>
<tr>
<td>In adults, even 4–5 lifetime courses of OCS are associated with a significantly increased dose-dependent risk of diabetes, cataract, heart failure, osteoporosis and several other conditions.</td>
</tr>
<tr>
<td>The need for OCS can be reduced by optimizing asthma therapy, including ICS-containing medications, treating modifiable risk factors, using relevant non-pharmacological strategies, and providing education and skills training, including inhaler technique and adherence. Refer patients for expert advice if needed (Box 3-8, p.66).</td>
</tr>
<tr>
<td>Make sure that all patients are receiving ICS-containing therapy. For adults and adolescents, GINA Track 1 with ICS-formoterol as anti-inflammatory reliever reduces the risk of severe exacerbations requiring OCS compared with using a SABA reliever (see Box 4-6, p.77).</td>
</tr>
<tr>
<td>All patients should have a written asthma action plan, showing them how to increase their inhaled medications and when to contact medical care.</td>
</tr>
</tbody>
</table>

See p.11 for abbreviations.

Reviewing response

Patients should see their doctor immediately or go to an acute care unit if their asthma continues to deteriorate despite following their written asthma action plan, or if their asthma suddenly worsens.

Follow up after a self-managed exacerbation

After a self-managed exacerbation, patients should see their primary care healthcare provider for a semi-urgent review (e.g., within 1–2 weeks, but preferably before ceasing oral corticosteroids if prescribed), for assessment of symptom control and additional risk factors for exacerbations (Box 2-2, p.37), and to identify the potential cause of the exacerbation.
This visit provides an opportunity for additional asthma education by a trained asthma educator or trained lay healthcare worker.

The written asthma action plan should be reviewed to see if it met the patient's needs. Maintenance asthma treatment can generally be reduced to previous levels 2–4 weeks after the exacerbation (Evidence D), unless the history suggests that the exacerbation occurred on a background of long-term poorly controlled asthma. In this situation, provided inhaler technique and adherence have been checked, a step up in treatment may be indicated (Box 4-6, p.77).

Patients with more than 1–2 exacerbations per year despite Step 4–5 therapy (or Step 4 therapy in children 6–11 years), or with several emergency department visits, should be referred to a specialist center, if available, for assessment and strategies to reduce their risk of future exacerbations and their risk of exposure to OCS. See decision tree for difficult-to-treat and severe asthma in Section 8 (p.139).

PRIMARY CARE MANAGEMENT OF ASTHMA EXACERBATIONS (ADULTS, ADOLESCENTS, CHILDREN 6–11 YEARS)

Assessing exacerbation severity

A brief focused history and relevant physical examination should be conducted concurrently with the prompt initiation of therapy, and findings documented in the notes. If the patient shows signs of a severe or life-threatening exacerbation, treatment with SABA, controlled oxygen and systemic corticosteroids should be initiated while arranging for the patient's urgent transfer to an acute care facility where monitoring and expertise are more readily available. Milder exacerbations can usually be treated in a primary care setting, depending on resources and expertise.

History

The history should include:

- Timing of onset and cause (if known) of the present exacerbation
- Severity of asthma symptoms, including any limiting exercise or disturbing sleep
- Any symptoms of anaphylaxis
- Any risk factors for asthma-related death (Box 9-1, p.160)
- All current reliever and maintenance medications, including doses and devices prescribed, adherence pattern, any recent dose changes, and response to current therapy.

Physical examination

The physical examination should assess:

- Signs of exacerbation severity (Box 9-4, p.167) and vital signs (e.g., level of consciousness, temperature, pulse rate, respiratory rate, blood pressure, ability to complete sentences, use of accessory muscles, wheeze).
- Complicating factors (e.g., anaphylaxis, pneumonia, pneumothorax)
- Signs of alternative conditions that could explain acute breathlessness (e.g., cardiac failure, inducible laryngeal obstruction, inhaled foreign body or pulmonary embolism).

Objective measurements

Pulse oximetry: Saturation levels <90% in children or adults signal the need for aggressive therapy. Under conditions of hypoxemia, oxygen saturation may be over-estimated by pulse oximetry in people with dark skin color.728

PEF in patients older than 5 years (Box 9-4, p.167)
Box 9-4. Management of asthma exacerbations in primary care (adults, adolescents, children 6–11 years)

PRIMARY CARE
Patient presents with acute or sub-acute asthma exacerbation

ASSESS the PATIENT
Is it asthma?
Factors for asthma-related death?
Severity of exacerbation? (consider worst feature)

MILD or MODERATE
- Talks in phrases, prefers sitting to lying, not agitated
- Respiratory rate increased
- Accessory muscles not used
- Pulse rate 100–120 bpm
- \(O_2 \) saturation (on air) 90–95%
- PEF >50% predicted or best

SEVERE
- Talks in words, sits hunched forwards, agitated
- Respiratory rate >30/min
- Accessory muscles in use
- Pulse rate >120 bpm
- \(O_2 \) saturation (on air) <90%
- PEF ≤50% predicted or best

LIFE-THREATENING
- Drowsy, confused or silent chest

TRANSFER TO ACUTE CARE FACILITY
- While waiting: give SABA, ipratropium bromide, \(O_2 \), systemic corticosteroid

START TREATMENT
- SABA 4–10 puffs by pMDI + spacer, repeat every 20 minutes for 1 hour
- Prednisolone: adults 40–60 mg, children 1–2 mg/kg, max. 40 mg
- Controlled oxygen (if available), target saturation 93–95% (children: 94–96%)

CONTINUE TREATMENT
- with SABA as needed
- ASSESS RESPONSE AT 1 HOUR (or earlier)

ASSESS FOR DISCHARGE
- Symptoms improved, not needing SABA
- PEF improving and >60–80% of personal best or predicted
- Oxygen saturation >94% room air
- Resources at home adequate

ARRANGE at DISCHARGE
- Reliever: as needed, not regularly
- Controller: start, or step up ICS therapy (Track 1 preferred). Check inhaler technique, adherence
- Prednisolone: continue, usually for 5–7 days (3–5 days for children)
- Follow up: within 2–7 days (1–2 days for children)

FOLLOW UP
- within 2–7 days (1–2 days for children)

Review symptoms and signs: Is the exacerbation resolving? Should prednisone be continued?
- Reliever: reduce as needed. ICS-containing controller: continue higher dose for short term (1–2 weeks) or long term (3 months), depending on background to exacerbation. Adults/adolescents: switch to GINA Track 1 with ICS-formoterol if available (Box 4-5)
- Risk factors: check and correct modifiable risk factors that may have contributed to exacerbation, including inhaler technique and adherence. Refer for expert advice if >1–2 exacerbations in a year.
- **Action plan:** Is it understood? Was it used appropriately? Does it need modification?

See list of abbreviations (p.11).
Treating exacerbations in primary care

The main initial therapies (Box 9-4, p.167) include repetitive administration of rapid-acting inhaled bronchodilators, early introduction of systemic corticosteroids, and controlled flow oxygen supplementation. The aim is to rapidly relieve airflow obstruction and hypoxemia, address the underlying inflammatory pathophysiology, and prevent relapse. Infection control procedures should be followed.

Inhaled short-acting beta\(_2\) agonists

Currently, inhaled salbutamol (albuterol) is the usual bronchodilator for acute asthma management. For mild to moderate exacerbations, repeated administration of inhaled SABA (up to 4–10 puffs every 20 minutes for the first hour) is an effective and efficient way to achieve rapid reversal of airflow limitation (Evidence A). After the first hour, the dose of SABA required varies from 4–10 puffs every 3–4 hours up to 6–10 puffs every 1–2 hours, or more often. No additional SABA is needed if there is a good response to initial treatment (e.g., PEF >60–80\% of predicted or personal best for 3–4 hours).

Delivery of SABA via a pMDI and spacer or a DPI leads to a similar improvement in lung function as delivery via nebulizer (Evidence A); however, patients with acute severe asthma were not included in these studies. The most cost-effective route of delivery is pMDI and spacer provided the patient can use this device. Because of static charge, some spacers require pre-washing with detergent before use. The manufacturer’s advice should be followed.

Combination ICS-formoterol in management of acute asthma exacerbations

Combination ICS-formoterol (budesonide-formoterol or beclometasone-formoterol) is now widely used as an anti-inflammatory reliever as part of routine asthma management in adults and adolescents, because it reduces the risk of severe exacerbations and exposure to OCS, compared with use of a SABA reliever (GINA Track 1, p.62). Up to a maximum total of 12 inhalations of budesonide-formoterol 200/6 mcg (160/4.5 mcg delivered dose) can be taken in a single day if needed (total of as-needed and maintenance doses, if used), based on evidence from large studies of its efficacy and safety up to this level of use. Given this extensive evidence, GINA suggests that the same maximum total use in a single day should apply to beclometasone-formoterol (see Box 4-8, p.84 for details of medications and doses).

In emergency departments, a randomized controlled trial in adult and adolescent patients with average FEV\(_1\) 42–45\% predicted compared the effect of 2 doses of budesonide-formoterol 400/12 mcg (delivered dose 320/9 mcg) versus 8 doses of salbutamol (albuterol) 100 mcg (delivered dose 90 mcg), with these doses repeated again after 5 minutes; all patients received OCS. Lung function was similar over 3 hours, but pulse rate was higher in the SABA group. A meta-analysis of earlier RCTs found that the efficacy and safety of formoterol itself was similar to that of salbutamol (albuterol) in management of acute asthma. Formoterol is no longer used for this purpose, but there is no evidence that budesonide-formoterol would be less effective in management of asthma exacerbations. More studies are needed. There are no published data on use of combination ICS-SABA in an emergency department setting.

Controlled oxygen therapy (if available)

Oxygen therapy should be titrated against pulse oximetry (if available) to maintain oxygen saturation at 93–95\% (94–98\% for children 6–11 years); note the potential for overestimation of oxygen saturation in people with dark skin color. In hospitalized asthma patients, controlled or titrated oxygen therapy is associated with lower mortality and better outcomes than high concentration (100\%) oxygen therapy (Evidence A). Oxygen should not be withheld if oximetry is not available, but the patient should be monitored for deterioration, somnolence or fatigue because of the risk of hypercapnia and respiratory failure. If supplemental oxygen is administered, oxygen saturation should be maintained no higher than 96\% in adults.

Systemic corticosteroids

OCS should be given promptly, especially if the patient is deteriorating, or had already increased their reliever and maintenance ICS-containing medications before presenting (Evidence B). The recommended dose of prednisolone for adults is 1 mg/kg/day or equivalent up to a maximum of 50 mg/day, and 1–2 mg/kg/day for children 6–11 years up to a
maximum of 40 mg/day). OCS should usually be continued for 5–7 days in adults \(^{739,740}\) and 3–5 days in children (Evidence B).\(^ {741}\) Patients should be advised about common short-term side-effects, including sleep disturbance, increased appetite, reflux and mood changes.\(^ {722}\) In adults, the risk of sepsis and thromboembolism is also increased after a short course of OCS.\(^ {571}\) While OCS are life-saving for acute severe asthma, use of 4–5 lifetime courses in adults is associated with a dose-dependent increased risk of long-term adverse effects such as osteoporosis, fractures, diabetes, heart failure and cataract.\(^ {225}\) This emphasizes the importance of optimizing asthma management after any severe exacerbation to reduce the risk of further exacerbations (see Section 4, p.67).

Maintenance ICS-containing medication

Patients already prescribed maintenance ICS-containing medication should be provided with advice about increasing the dose for the next 2–4 weeks, as summarized in Box 9-2 (p.162). Patients not currently taking controller medication should be commenced on ICS-containing therapy, as SABA-only treatment of asthma is no longer recommended. An exacerbation requiring medical care indicates that the patient is at increased risk of future exacerbations (Box 2-2, p.37).

Antibiotics (not recommended)

Evidence does not support routine use of antibiotics in the treatment of acute asthma exacerbations unless there is strong evidence of lung infection (e.g., fever and purulent sputum or radiographic evidence of pneumonia).\(^ {742}\)

Reviewing response

During treatment, patients should be closely monitored, and treatment titrated according to their response. Patients who present with signs of a severe or life-threatening exacerbation (Box 9-4, p.167), who fail to respond to treatment, or who continue to deteriorate should be transferred immediately to an acute care facility. Patients with little or slow response to SABA treatment should be closely monitored.

For many patients, lung function can be monitored after SABA therapy is initiated. Additional treatment should continue until PEF or FEV\(_1\) reaches a plateau or (ideally) returns to the patient’s previous best. A decision can then be made whether to send the patient home or transfer them to an acute care facility.

Follow up

Discharge medications should include regular maintenance ICS-containing treatment (see Box 4-8, p.84 and Box 9-5, p.170), as-needed reliever medication (low-dose ICS-formoterol, ICS-SABA or SABA) and a short course of OCS. SABA-only treatment is not recommended. Inhaler technique and adherence should be reviewed before discharge. Patients should be advised to use their reliever inhaler only as-needed, rather than routinely. A follow-up appointment should be arranged for about 2–7 days later, depending on the clinical and social context.

At the review visit the healthcare provider should assess whether the flare-up has resolved, and whether OCS can be ceased. They should assess the patient’s level of symptom control and risk factors; explore the potential cause of the exacerbation; and review the written asthma action plan (or provide one if the patient does not already have one). Maintenance ICS-containing treatment can generally be stepped back to pre-exacerbation levels 2–4 weeks after the exacerbation. However, if the exacerbation was preceded by symptoms suggestive of chronically poorly controlled asthma, and inhaler technique and adherence are good, a step up in treatment (Box 4-6, p.77) may be indicated.
Box 9-5. Discharge management after acute care for asthma

<table>
<thead>
<tr>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled corticosteroid (ICS)-containing therapy</td>
</tr>
<tr>
<td>Initiate ICS-containing treatment, if not already being taken. For adults/adolescents, maintenance-and-reliever therapy with ICS-formoterol (MART) is preferred as it reduces risk of future exacerbations compared with using a SABA reliever (see Box 4-6, p.77). For adults/adolescents, start MART at Step 4 on discharge (Box 4-5, p.76, Box 4-6, p.77 and Box 4-8, p.84). If prescribing an ICS regimen with SABA reliever, step maintenance dose up for 2–4 weeks (Box 9-2, p.162). Emphasize good adherence and check and correct inhaler technique.</td>
</tr>
</tbody>
</table>

| Oral corticosteroids (OCS) |
| To reduce the risk of relapse, prescribe at least a 5–7 day course of OCS for adults (prednisolone or equivalent 40–50 mg/day) and 3–5 days for children (1–2 mg/kg/day to a maximum of 40 mg/day) (Evidence A). Review progress before ceasing OCS. If the OCS is dexamethasone, treatment is only for total 1–2 days, but if there is failure of resolution, or relapse of symptoms, consider switching to prednisolone. |

| Reliever medication: as-needed rather than regular |
| Switch patients to as-needed rather than regular reliever medication use, and monitor symptomatic and objective improvement. Regular use of SABA for even 1–2 weeks leads to beta-receptor down-regulation, increased airway hyperresponsiveness and increased eosinophilic inflammation, with reduced bronchodilator response, and regular SABA can mask worsening asthma. Ipratropium bromide, if used in the ED or hospital, may be quickly discontinued as it is unlikely to provide ongoing benefit. Patients prescribed ICS-formoterol as their reliever should return to this on/before discharge if SABA was substituted in ED or hospital. |

| Risk factors and triggers that contributed to the exacerbation |
| Identify factors that may have contributed to the exacerbation, and implement strategies to reduce modifiable risk factors (Box 3-5, p.55). These may include irritant or allergen exposure, viral respiratory infections, inadequate long-term ICS treatment, problems with adherence, and/or lack of a written asthma action plan. Handwashing, masks and social/physical distancing may reduce the risk of acquiring viral respiratory infections, including influenza. |

| Self-management skills and written asthma action plan |
| - Review inhaler technique and correct if needed (Box 5-2, p.110). |
| - Provide a written asthma action plan (Box 9-2, p.162) or review the patient’s existing plan, either at discharge or as soon as possible afterwards. Patients discharged from the ED with an action plan and PEF meter have better outcomes than patients discharged without these resources. For patients prescribed ICS-formoterol reliever, use an action plan template customized for this treatment. Review technique with PEF meter if used. |
| - Evaluate the patient’s response as the exacerbation was developing. If it was inadequate, review the action plan and provide further written guidance to assist if asthma worsens again. |
| - Review the patient’s use of medications before and during the exacerbation. Was ICS-containing treatment increased promptly and by how much? Was ICS-formoterol reliever (if prescribed) increased appropriately in response to symptoms? If OCS were indicated, were they taken; did the patient experience adverse effects? If the patient is provided with a prescription for OCS to be on hand for subsequent exacerbations, beware of inappropriate use, as even 4–5 lifetime courses of OCS in adults increase the risk of serious adverse effects. |

| Follow up communication and appointment |
| - Inform the patient’s usual healthcare provider about their ED presentation/admission, instructions given on discharge, and any treatment changes. |
| - Make a follow-up appointment within 2–7 days of discharge (1–2 days for children) to ensure that treatment is continued. The patient should be followed to ensure that asthma symptoms return to well controlled, and that their lung function returns to their personal best (if known). Refer for expert advice if the patient required ICU treatment, or if they already had one or more other exacerbations in the last 12 months; see Box 3-8, p.66. |

See list of abbreviations (p.11).
EMERGENCY DEPARTMENT MANAGEMENT OF EXACERBATIONS (ADULTS, ADOLESCENTS, CHILDREN 6–11 YEARS)

Severe exacerbations of asthma are life-threatening medical emergencies, which are most safely managed in an acute care setting e.g., emergency department (Box 9-6, p.171). Infection control procedures should be followed. Management of asthma in the intensive care unit is beyond the scope of this report and readers are referred to a comprehensive review.748

Box 9-6. Management of asthma exacerbations in acute care facility (e.g., emergency department)

See list of abbreviations (p.11).
Assessment

History

A brief history and physical examination should be conducted concurrently with the prompt initiation of therapy. Include:

- Time of onset and cause (if known) of the present exacerbation
- Severity of asthma symptoms, including any limiting exercise or disturbing sleep
- Any symptoms of anaphylaxis
- Risk factors for asthma-related death (Box 9-1, p.160)
- All current reliever and maintenance medications, including doses and devices prescribed, adherence pattern, any recent dose changes, and response to current therapy.

Physical examination

The physical examination should assess:

- Signs of exacerbation severity (Box 9-6, p.171), including vital signs (e.g., level of consciousness, temperature, pulse rate, respiratory rate, blood pressure, ability to complete sentences, use of accessory muscles)
- Complicating factors (e.g., anaphylaxis, pneumonia, atelectasis, pneumothorax or pneumomediastinum)
- Signs of alternative conditions that could explain acute breathlessness (e.g., cardiac failure, inducible laryngeal obstruction, inhaled foreign body or pulmonary embolism).

Objective assessments

Objective assessments are also needed as the physical examination alone may not indicate the severity of the exacerbation.749,750 However, patients, and not their laboratory values, should be the focus of treatment.

Measurement of lung function: this is strongly recommended. If possible, and without unduly delaying treatment, PEF or FEV1 should be recorded before treatment is initiated, although spirometry may not be possible in children with acute asthma. Lung function should be monitored at one hour and at intervals until a clear response to treatment has occurred or a plateau is reached.

Oxygen saturation: this should be closely monitored, preferably by pulse oximetry. In children, oxygen saturation is normally ≥95% when breathing room air at sea level, and saturation <92% is a predictor of the need for hospitalization (Evidence C).751 Saturation levels <90% in children or adults signal the need for aggressive therapy. Subject to clinical urgency, saturation should be assessed before oxygen is commenced, or 5 minutes after oxygen is removed or when saturation stabilizes. Of concern, under conditions of hypoxemia, oxygen saturation may be over-estimated by pulse oximeters in people with dark skin color.728

Arterial blood gas measurements are not routinely required:752 They should be considered for patients with PEF or FEV1 <50% predicted,753 or for those who do not respond to initial treatment or are deteriorating. Supplemental controlled oxygen should be continued while blood gases are obtained. During an asthma exacerbation PaCO2 is often below normal (<40 mmHg). Fatigue and somnolence suggest that pCO2 may be increasing and airway intervention may be needed. PaO2<60 mmHg (8 kPa) and normal or increased PaCO2 (especially >45 mmHg, 6 kPa) indicate respiratory failure.

Chest X-ray is not routinely recommended: In adults, chest X-ray should be considered if a complicating or alternative cardiopulmonary process is suspected (especially in older patients), or for patients who are not responding to treatment where a pneumothorax may be difficult to diagnose clinically.754 Similarly, in children, routine check X-ray is not recommended unless there are physical signs suggestive of pneumothorax, parenchymal disease or an inhaled foreign body. Features associated with positive chest X-ray findings in children include fever, no family history of asthma, and localized lung examination findings.755
Treatment in acute care settings such as the emergency department

The following treatments are usually administered concurrently to achieve rapid improvement.\(^{756}\)

Oxygen

To achieve arterial oxygen saturation of 93–95% (94–98% for children 6–11 years), oxygen should be administered by nasal cannulae or mask. Note the potential for overestimation of saturation in people with dark skin color.\(^{728}\) In severe exacerbations, controlled low flow oxygen therapy using pulse oximetry to maintain saturation at 93–95% is associated with better physiological outcomes than with high concentration (100%) oxygen therapy (Evidence B).\(^{734-736}\) However, oxygen therapy should not be withheld if pulse oximetry is not available (Evidence D). Once the patient has stabilized, consider weaning them off oxygen using oximetry to guide the need for ongoing oxygen therapy.

Inhaled short-acting beta\(_2\) agonists

Currently, inhaled salbutamol (albuterol) is the usual bronchodilator in acute asthma management. The most cost-effective and efficient delivery is by pMDI with a spacer (Evidence A).\(^{729,731}\) Evidence for pMDI and spacer is less robust in severe and near-fatal asthma. Systematic reviews of intermittent versus continuous SABA in acute asthma, which mostly used nebulized SABA, provide conflicting results. Use of nebulizers can disseminate aerosols and potentially contribute to spread of respiratory viral infections.\(^{757}\)

Current evidence does not support the routine use of intravenous beta\(_2\) agonist in most patients with severe asthma exacerbations (Evidence A).\(^{758}\)

Combination ICS-formoterol as an alternative to high dose SABA

Compared with SABA, similar efficacy and safety have been reported from emergency department studies with formoterol.\(^{733}\) and in one study with budesonide-formoterol.\(^{732}\) The later study showed that high-dose budesonide-formoterol had similar efficacy and safety profile to high dose SABA.\(^{732}\) In this study, patients received 2 doses of budesonide-formoterol 400/12 mcg (delivered dose 320/9 mcg) or 8 doses of salbutamol (albuterol) 100 mcg (delivered dose 90 mcg), repeated once after 5 minutes; all patients received OCS.\(^{732}\) While more studies are needed, meta-analysis of data from earlier studies comparing high-dose formoterol with high dose salbutamol (albuterol) for treatment of acute asthma in the ED setting suggest that budesonide-formoterol would also be effective.\(^{733}\) Formoterol alone is no longer used for this purpose.

Epinephrine (for anaphylaxis)

Intramuscular epinephrine (adrenaline) is indicated in addition to standard therapy for acute asthma associated with anaphylaxis and angioedema. It is not routinely indicated for other asthma exacerbations.

Systemic corticosteroids

Systemic corticosteroids speed resolution of exacerbations and prevent relapse, and in acute care settings should be utilized in all but the mildest exacerbations in adults, adolescents and children 6–11 years.\(^{759,760}\) (Evidence A). Where possible, systemic corticosteroids should be administered to the patient within 1 hour of presentation;\(^{759}\) some studies showed similar benefit with high-dose ICS.\(^{761}\)

Use of systemic corticosteroids is particularly important in the emergency department if:

- Initial SABA treatment fails to achieve lasting improvement in symptoms
- The exacerbation developed while the patient was taking OCS
- The patient has a history of previous exacerbations requiring OCS.

Route of delivery: oral administration is as effective as intravenous. The oral route is preferred because it is quicker, less invasive and less expensive.\(^{762,763}\) For children, a liquid formulation is preferred to tablets. OCS require at least 4 hours to produce a clinical improvement. Intravenous corticosteroids can be administered when patients are too dyspneic to
swallow; if the patient is vomiting; or when patients require non-invasive ventilation or intubation. Evidence does not demonstrate a benefit of intramuscular corticosteroids over oral corticosteroids.760

Dosage: daily doses of OCS equivalent to 50 mg prednisolone as a single morning dose, or 200 mg hydrocortisone in divided doses, are typically used for adults. For children, a prednisolone dose of 1–2 mg/kg up to a maximum of 40 mg/day is suggested.764

Duration: 5- and 7-day courses of prednisone or prednisolone in adults have been found to be as effective as 10- and 14-day courses respectively (Evidence B).739,740 and in most children, a 3–5-day course is usually considered sufficient. Evidence from studies in which all patients were taking maintenance ICS after discharge suggests that there is no benefit in tapering the dose of OCS, either in the short term755 or over several weeks766 (Evidence B). In adults, a small number of studies examined oral dexamethasone 12–16 mg given once daily for 1–2 days in children and adults; the relapse rate was similar to that with prednisolone for 3–5 days, and adverse events rates were similar.744,767,768 In children, a systematic review found no difference in relapse rate with oral dexamethasone 0.3 mg/kg or 0.6 mg/kg once daily for 1–2 days versus oral prednisone/prednisolone for 3–5 days; adherence was better, and there was a substantially lower risk of vomiting with dexamethasone.759 Oral dexamethasone should not be continued beyond 2 days because of concerns about metabolic side-effects. If there is a failure of resolution, or relapse of symptoms, consideration should be given to switching to prednisolone.

Inhaled corticosteroids

Within the emergency department: high-dose ICS given within the first hour after presentation reduces the need for hospitalization in patients not receiving systemic corticosteroids (Evidence A).761 When added to systemic corticosteroids, evidence is conflicting in adults.770 In children, administration of ICS with or without concomitant systemic corticosteroids within the first hours of attendance to the emergency department might reduce the risk of hospital admission and need for systemic corticosteroids (Evidence B).771 Overall, add-on ICS are well tolerated; however, cost may be a significant factor, and the agent, dose and duration of treatment with ICS in the management of asthma in the emergency department remain unclear. Patients admitted to hospital for an asthma exacerbation should continue on, or be prescribed, ICS-containing therapy.

On discharge home: patients should be prescribed ongoing ICS-containing treatment since the occurrence of a severe exacerbation is a risk factor for future exacerbations (Evidence B) (Box 2-2, p.37), and ICS-containing medications significantly reduce the risk of asthma-related death or hospitalization (Evidence A).329 SABA-only treatment of asthma is no longer recommended. For short-term outcomes such as relapse requiring admission, symptoms, and quality of life, a systematic review found no significant differences when ICS were added to systemic corticosteroids after discharge.772 There was some evidence, however, that post-discharge ICS were as effective as systemic corticosteroids for milder exacerbations, but the confidence limits were wide (Evidence B).772 Cost may be a significant factor for patients in the use of high-dose ICS, and further studies are required to establish their role.772

After an ED presentation or hospitalization, the preferred ongoing treatment is maintenance-and-reliever therapy (MART) with ICS-formoterol. In patients with a history of ≥1 severe exacerbations, MART reduces the risk of another severe exacerbation in the next 12 months by 32% compared with same dose ICS or ICS-LABA plus as-needed SABA, and by 23% compared with higher dose ICS-LABA plus as-needed SABA.774 See Box 4-8 (p.84) for medications and doses.

Other treatments

Ipratropium bromide

For adults and children with moderate-severe exacerbations, treatment in the emergency department with both SABA and ipratropium, a short-acting anticholinergic, was associated with fewer hospitalizations (Evidence A for adults;773 Evidence B for adolescents/children774) and greater improvement in PEF and FEV₁ compared with SABA alone (Evidence A, adults/adolescents).773,775 For children hospitalized for acute asthma, no benefits were seen from adding ipratropium to SABA, including no reduction in length of stay, but the risk of nausea and tremor was reduced.774
Aminophylline and theophylline (not recommended)

Intravenous aminophylline and theophylline should not be used in the management of asthma exacerbations, in view of their poor efficacy and safety profile, and the greater effectiveness and relative safety of SABA. Nausea and/or vomiting are more common with aminophylline. The use of intravenous aminophylline is associated with severe and potentially fatal side-effects, particularly in patients already treated with sustained-release theophylline. In adults with severe asthma exacerbations, add-on treatment with aminophylline does not improve outcomes compared with SABA alone.

Magnesium

Intravenous magnesium sulfate is not recommended for routine use in asthma exacerbations; however, when administered as a single 2 g infusion over 20 minutes, it reduces hospital admissions in some patients, including adults with FEV1 <25–30% predicted at presentation; adults and children who fail to respond to initial treatment and have persistent hypoxemia; and children whose FEV1 fails to reach 60% predicted after 1 hour of care (Evidence A). Randomized, controlled trials that excluded patients with more severe asthma showed no benefit with the addition of intravenous or nebulized magnesium compared with placebo in the routine care of asthma exacerbations in adults and adolescents or children (Evidence B).

Helium oxygen therapy

A systematic review of studies comparing helium–oxygen with air–oxygen suggests there is no role for this intervention in routine care (Evidence B), but it may be considered for patients who do not respond to standard therapy; however, availability, cost and technical issues should be considered.

Leukotriene receptor antagonists (LTRAs)

There is limited evidence to support the use of oral or intravenous LTRAs in acute asthma. Small studies have demonstrated improvement in lung function, but the clinical role and safety of these agents requires more study.

Antibiotics (not recommended)

Evidence does not support the routine use of antibiotics in the treatment of acute asthma exacerbations unless there is strong evidence of lung infection (e.g., fever or purulent sputum or radiographic evidence of pneumonia).

Non-invasive ventilation (NIV)

The evidence regarding the role of NIV in asthma is weak. A systematic review identified five studies in adults involving 206 patients with acute severe asthma treated with NIV or placebo. Two studies found no difference in need for endotracheal intubation but one study identified fewer admissions in the NIV group. No deaths were reported in either study. Given the small size of the studies, no recommendation is offered. If NIV is tried, the patient should be monitored closely (Evidence D). It should not be attempted in agitated patients, and patients should not be sedated to receive NIV (Evidence D).

Sedatives (MUST BE AVOIDED)

Sedation should be strictly avoided during exacerbations of asthma because of the respiratory depressant effect of anxiolytic and hypnotic drugs. An association between the use of these drugs and avoidable asthma deaths has been reported.

Reviewing response

Clinical status and oxygen saturation should be re-assessed frequently, with further treatment titrated according to the patient’s response (Box 9-6, p.171). Lung function should be measured after one hour, i.e., after the first three bronchodilator treatments, and patients who deteriorate despite intensive bronchodilator and corticosteroid treatment should be re-evaluated for transfer to the intensive care unit.
Criteria for hospitalization versus discharge from the emergency department

From retrospective analyses, clinical status (including the ability to lie flat) and lung function 1 hour after commencement of treatment are more reliable predictors of the need for hospitalization than the patient’s status on arrival. Spirometric criteria that have been proposed for hospital admission or discharge from the emergency department:

- If pre-treatment FEV₁ or PEF is <25% predicted or personal best, or post-treatment FEV₁ or PEF is <40% predicted or personal best, hospitalization is recommended.
- If post-treatment lung function is 40–60% predicted, discharge may be possible after considering the patient’s risk factors (Box 9-1, p.160) and availability of follow-up care.
- If post-treatment lung function is >60% predicted or personal best, discharge is recommended after considering risk factors and availability of follow-up care.

Other factors associated with increased likelihood of need for admission include:

- Female sex, older age and non-white race
- Use of more than eight beta₂ agonist puffs in the previous 24 hours
- Severity of the exacerbation (e.g., need for resuscitation or rapid medical intervention on arrival, respiratory rate >22 breaths/minute, oxygen saturation <95%, final PEF <50% predicted)
- Past history of severe exacerbations (e.g., intubations, asthma admissions)
- Previous unscheduled office and emergency department visits requiring use of OCS.

Overall, these risk factors should be considered by clinicians when making decisions on admission/discharge for patients with asthma managed in the acute care setting. The patient’s social circumstances should also be considered.

DISCHARGE PLANNING AND FOLLOW-UP

Prior to discharge from the emergency department or hospital to home, arrangements should be made for a follow-up appointment within 2–7 days (1–2 days for children), and strategies to improve asthma management including medications, inhaler skills and written asthma action plan, should be addressed (Box 9-5, p.170).

All patients should be prescribed ongoing ICS-containing treatment to reduce the risk of further exacerbations. For adults and adolescents, the preferred regimen after discharge is maintenance-and-reliever therapy (MART) with the anti-inflammatory reliever ICS-formoterol, because this will reduce the risk of future severe exacerbations and reduce the need for OCS compared with a regimen with a SABA reliever. In the context of a recent ED visit or hospitalization, it would be appropriate to commence treatment with ICS-formoterol in adults and adolescents at Step 4. For medications and doses, see Box 4-8 (p.84), The maintenance dose can be stepped down later, once the patient has fully recovered and asthma has remained stable for 2–3 months (see Box 4-13, p.102).

Follow up after emergency department presentation or hospitalization for asthma

Following discharge, the patient should be reviewed by their healthcare provider regularly over subsequent weeks until good symptom control is achieved and personal best lung function is reached or surpassed. Incentives such as free transport and telephone reminders improve primary care follow up but have shown no effect on long-term outcomes.

At follow-up, again ensure that the patient’s treatment has been optimized to reduce the risk of future exacerbations. Consider switching to GINA Track 1 with the anti-inflammatory reliever ICS-formoterol, if not already prescribed. See Box 4-8 (p.84) for medications and doses. Check and correct inhaler technique and adherence.
Patients discharged following an emergency department presentation or hospitalization for asthma should be especially targeted for an asthma education program, if one is available. Patients who were hospitalized may be particularly receptive to information and advice about their illness. Healthcare providers should take the opportunity to review:

- The patient’s understanding of the cause of their asthma exacerbation
- Modifiable risk factors for exacerbations (including, where relevant, smoking) (Box 3-5, p.55)
- The patient’s understanding of the purposes and correct uses of medications, including ICS-containing maintenance treatment and anti-inflammatory reliever, if prescribed
- The actions the patient needs to take to respond to worsening symptoms or peak flows.

After an emergency department presentation, comprehensive intervention programs that include optimization of asthma treatment, inhaler technique, and elements of self-management education (self-monitoring, written action plan and regular review) are cost effective and have shown significant improvement in asthma outcomes (Evidence B). Referral for expert advice should be considered for patients who have been hospitalized for asthma, or who have had several presentations to an acute care setting despite having a primary care provider. Follow-up by a specialist is associated with fewer subsequent emergency department visits or hospitalizations and better asthma control.

Optimize asthma treatment to minimize the use of OCS

OCS can be life-saving during severe asthma exacerbations, but there is increasing awareness of the risks of repeated courses.

In adults, short-term adverse effects of OCS include sleep disturbance, increased appetite, reflux, mood changes, sepsis, pneumonia, and thromboembolism.

In adults, even 4–5 lifetime courses of OCS are associated with a significantly increased dose-dependent risk of diabetes, cataract, heart failure, osteoporosis and several other conditions.

The need for OCS can be reduced by optimizing inhaled therapy, including attention to inhaler technique and adherence.

For adults and adolescents, GINA Track 1 with ICS-formoterol as anti-inflammatory reliever reduces the risk of severe exacerbations requiring OCS compared with using a SABA reliever (see Box 4-6, p.77).
10. Diagnosis of asthma in children 5 years and younger

KEY POINTS

Recurrent wheezing occurs in a large proportion of children 5 years and younger, typically with viral upper respiratory tract infections. It is difficult to discern when this is the initial presentation of asthma.

Previous classifications of wheezing phenotypes (episodic wheezing and multiple-trigger wheezing; or transient wheezing, persistent wheezing and late-onset wheezing) do not appear to identify stable phenotypes, and their clinical usefulness is uncertain. However, emerging research suggests that more clinically relevant phenotypes will be described and phenotype-directed therapy possible.

A diagnosis of asthma in young children with a history of wheezing is more likely if they have:

• Wheezing or coughing that occurs with exercise, laughing or crying, or in the absence of an apparent respiratory infection
• A history of other allergic disease (eczema or allergic rhinitis), allergen sensitization or asthma in first-degree relatives
• Clinical improvement during 2–3 months of low-dose inhaled corticosteroid (ICS) treatment plus as-needed short-acting beta2 agonist (SABA) reliever, and worsening after cessation.

ASTHMA AND WHEEZING IN YOUNG CHILDREN

Asthma is the most common chronic disease of childhood and the leading cause of childhood morbidity from chronic disease as measured by school absences, emergency department visits and hospitalizations. Asthma often begins in early childhood; in up to half of people with asthma, symptoms commence during childhood. Onset of asthma is earlier in males than females.

No intervention has yet been shown to prevent the development of asthma or modify its long-term natural course. Atopy is present in the majority of children with asthma who are over 3 years old, and allergen-specific sensitization (and particularly multiple early-life sensitizations) is one of the most important risk factors for the development of asthma.

Viral-induced wheezing

Recurrent wheezing occurs in a large proportion of children aged 5 years or younger. It is typically associated with upper respiratory tract infections (URTI), which occur in this age group around 6–8 times per year. Some viral infections (respiratory syncytial virus and rhinovirus) are associated with recurrent wheeze throughout childhood. Wheezing in this age group is a highly heterogeneous condition, and not all wheezing indicates asthma. A large proportion of wheezing episodes in young children is virally induced whether the child has asthma or not. Therefore, deciding when wheezing with a respiratory infection is truly an isolated event or represents a recurrent clinical presentation of childhood asthma may be difficult. In children aged under 1 year, bronchiolitis may present with wheeze. It is usually accompanied by other chest signs such as crackles on auscultation.

Wheezing phenotypes

In the past, two main classifications of wheezing (called ‘wheezing phenotypes’) were proposed:

• Symptom-based classification: this was based on whether the child had only episodic wheeze (wheezing during discrete time periods, often in association with URTI, with symptoms absent between episodes) or multiple-trigger wheeze (episodic wheezing with symptoms also occurring between these episodes, e.g., during sleep or with triggers such as activity, laughing, or crying).
• Time trend-based classification: this system was initially based on retrospective analysis of data from a cohort study. It included transient wheeze (symptoms began and ended before the age of 3 years); persistent wheeze...
(symptoms began before the age of 3 years and continued beyond the age of 6 years), and late-onset wheeze (symptoms began after the age of 3 years). These general patterns have been confirmed in subsequent studies using unsupervised statistical approaches.805,806

However, prospective allocation of individual children to these phenotypes has been challenging in ‘real-life’ clinical situations, and the clinical usefulness of these, and other, classification and asthma prediction systems remain a subject of active investigation. For example, one study conducted in a research setting with high medication adherence found that daily ICS treatment reduced exacerbations in preschool children characterized as ‘sensitization with indoor pet exposure’ or ‘multiple sensitization with eczema’, but not among those characterized as ‘minimal sensitization’ or ‘sensitization with tobacco smoke exposure’.807

CLINICAL DIAGNOSIS OF ASTHMA

It may be challenging to make a confident diagnosis of asthma in children 5 years and younger, because episodic respiratory symptoms such as wheezing and cough are also common in children without asthma, particularly in those aged 0–2 years,349,350 and it is not possible to routinely assess airflow limitation or bronchodilator responsiveness in this age group. A probability-based approach, based on the pattern of symptoms during and between viral respiratory infections,808 may be helpful for discussion with parents/caregivers (Box 10-1, Box 10-2 and Box 10-3, p.179). This allows individual decisions to be made about whether to give a trial of controller treatment. It is important to make decisions for each child individually, to avoid either over- or under-treatment.

Box 10-1. Probability of asthma diagnosis in children 5 years and younger

<table>
<thead>
<tr>
<th>SYMPTOM PATTERN (may change over time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms (cough, wheeze, heavy breathing) for</td>
</tr>
<tr>
<td><10 days during upper respiratory tract infections</td>
</tr>
<tr>
<td>2–3 episodes per year</td>
</tr>
<tr>
<td>No symptoms between episodes</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| Few have asthma | Some have asthma | Most have asthma |
Box 10-2. Features suggesting a diagnosis of asthma in children 5 years and younger

<table>
<thead>
<tr>
<th>Feature</th>
<th>Characteristics suggesting asthma</th>
</tr>
</thead>
</table>
| Cough | • Recurrent or persistent non-productive cough that may be worse at night or accompanied by wheezing and breathing difficulties
• Cough occurring with exercise, laughing, crying or exposure to tobacco smoke, particularly in the absence of an apparent respiratory infection |
| Wheezing | • Recurrent wheezing, including during sleep or with triggers such as activity, laughing, crying or exposure to tobacco smoke or air pollution |
| Difficult or heavy breathing or shortness of breath| • Occurring with exercise, laughing, or crying |
| Reduced activity | • Not running, playing or laughing at the same intensity as other children; tires earlier during walks (wants to be carried) |
| Past or family history | • Other allergic disease (atopic dermatitis or allergic rhinitis, food allergy). Asthma in first-degree relative(s) |
| Therapeutic trial with low-dose ICS (Box 11-2, p.190) plus as-needed SABA | • Clinical improvement during 2–3 months of low-dose ICS treatment and worsening when treatment is stopped |

See list of abbreviations (p.11).

Box 10-3. Questions that can be used to elicit features suggestive of asthma

- **Does your child have wheezing?** Wheezing is a high-pitched noise which comes from the chest and not the throat. Use of a video questionnaire or asking a parent/caregiver to record an episode on a smartphone if available can help to confirm the presence of wheeze and differentiate from upper airway abnormalities.
- **Does your child wake up at night because of coughing, wheezing, or difficult breathing, heavy breathing, or breathlessness?**
- **Does your child have to stop running, or play less hard, because of coughing, wheezing or difficult breathing, heavy breathing, or shortness of breath?**
- **Does your child cough, wheeze or get difficult breathing, heavy breathing, or shortness of breath when laughing, crying, playing with animals, or when exposed to strong smells or smoke?**

Additional features may help to elicit features that support the diagnosis of asthma or allergic asthma:

- **Has your child ever had eczema, or been diagnosed with allergy to foods?**
- **Has anyone in your family had asthma, hay fever, food allergy, eczema, or any other disease with breathing problems?**
Symptoms suggestive of asthma in children 5 years and younger

An asthma diagnosis in children 5 years and younger can often be based on:

- Symptom patterns (recurrent episodes of wheeze, cough, breathlessness (typically manifested by activity limitation), and nocturnal symptoms or awakenings)
- Presence of risk factors for development of asthma, such as family history of atopy, allergic sensitization, allergy or asthma, or a personal history of food allergy or atopic dermatitis
- Therapeutic response to controller treatment
- Exclusion of alternate diagnoses.

Box 10-1 shows the estimated probability of an asthma diagnosis in children aged 5 years or younger who have viral-induced cough, wheeze or heavy breathing, based on the pattern of symptoms.810,811

Many young children wheeze with viral infections; it may be difficult to decide when a child should be given controller treatment. The frequency and severity of wheezing episodes and the temporal pattern of symptoms (only with viral colds or also in response to other triggers) should be considered. Any controller treatment should be viewed as a treatment trial, with follow up scheduled after 2–3 months to review the response. Review is also important since the pattern of symptoms tends to change over time in a large proportion of children.

A diagnosis of asthma in young children is therefore based largely on recurrent symptom patterns combined with a careful clinical assessment of family history and physical findings with careful consideration of the differential diagnostic possibilities. A positive family history of allergic disorders, or the presence of atopy or allergic sensitization provide additional predictive support, as early allergic sensitization increases the likelihood that a wheezing child will develop persistent asthma.800

Wheeze

Wheeze is the most common and specific symptom associated with asthma in children 5 years and younger. Wheezing occurs in several different patterns, but a wheeze that occurs recurrently, during sleep, or with triggers such as activity, laughing, or crying, is consistent with a diagnosis of asthma. Clinician confirmation is important, as parents/caregivers may describe any noisy breathing as 'wheezing'.812 Some cultures do not have a word for wheeze.

Wheezing may be interpreted differently based on:

- Who observes it (e.g., parent/caregiver versus the healthcare provider)
- The environmental context (e.g., high income countries versus areas with a high prevalence of parasites that involve the lung)
- The cultural context (e.g., the relative importance of certain symptoms can differ between cultures, as can the diagnosis and treatment of respiratory tract diseases in general).

Cough

Cough due to asthma is generally non-productive, recurrent and/or persistent, and is usually accompanied by wheezing episodes and breathing difficulties. Allergic rhinitis may be associated with cough in the absence of asthma. A nocturnal cough (when the child is asleep) or a cough that occurs with exercise, laughing or crying, in the absence of an apparent respiratory infection, supports a diagnosis of asthma. The common cold and other respiratory illnesses including pertussis are also associated with coughing. Prolonged cough in infancy, and cough without cold symptoms, are associated with later parent/caregiver-reported physician-diagnosed asthma, independent of infant wheeze. Characteristics of cough in infancy may be early markers of asthma susceptibility, particularly among children with maternal asthma.813
Breathlessness

Parents/caregivers may also use terms such as ‘difficult breathing’, ‘heavy breathing’, or ‘shortness of breath’. Breathlessness that occurs during exercise and is recurrent increases the likelihood of the diagnosis of asthma. In infants and toddlers, crying and laughing are equivalent to exercise in older children.

Activity and social behavior

Physical activity is an important trigger of asthma symptoms in young children. Young children with poorly controlled asthma often abstain from strenuous play or exercise to avoid symptoms, but many parents/caregivers are unaware of such changes in their children’s lifestyle. Engaging in play is important for a child’s normal social and physical development. For this reason, careful review of the child’s daily activities, including their willingness to walk and play, is important when assessing a potential asthma diagnosis in a young child. Parents/caregivers may report irritability, tiredness and mood changes in their child as the main problems when asthma is not well controlled.

TESTS TO ASSIST IN DIAGNOSIS

While no tests specifically and definitively diagnose asthma with certainty, in children 5 years and younger, the following are useful adjuncts.

Therapeutic trial

A trial of treatment for at least 2–3 months with as-needed SABA and regular low-dose ICS may provide some guidance about the diagnosis of asthma (Evidence D). Response should be evaluated by symptom control (daytime and night-time), and the frequency of wheezing episodes and exacerbations. Marked clinical improvement during treatment, and deterioration when treatment is stopped, support a diagnosis of asthma. Due to the variable nature of asthma in young children, a therapeutic trial may need to be repeated to confirm the diagnosis.

Tests for allergic sensitization

Sensitization to allergens can be assessed using either skin prick testing or allergen-specific immunoglobulin E. Allergic sensitization is present in the majority of children with asthma once they are over 3 years of age; however, absence of sensitization to common aeroallergens does not rule out a diagnosis of asthma. Allergic sensitization is the best predictor for development of persistent asthma.814

Chest X-ray

Radiographs are rarely indicated; however, if there is doubt about the diagnosis of asthma in a wheezing or coughing child, a plain chest X-ray may help to exclude structural abnormalities (e.g., congenital lobar emphysema, vascular ring) chronic infections such as tuberculosis, an inhaled foreign body, or other diagnoses. Other imaging investigations may be appropriate, depending on the condition being considered.

Lung function testing

Due to the inability of most children 5 years and younger to perform reproducible expiratory maneuvers, lung function testing, bronchial provocation testing, and other physiological tests do not have a major role in the diagnosis of asthma at this age. However, by 5 years of age, many children are capable of performing reproducible spirometry if coached by an experienced technician and with visual incentives.

Exhaled nitric oxide

Measurement of fractional concentration of exhaled nitric oxide (FeNO) is not widely available for most children in this age group and currently remains primarily a research tool. FeNO can be measured in young children with tidal breathing, and normal reference values have been published for children aged 1–5 years.815 In preschool children with recurrent coughing and wheezing, an elevated FeNO recorded 4 weeks from any URTI predicted physician-diagnosed asthma at school age,816 and increased the odds for wheezing, asthma and ICS use by school age, independent of clinical history and presence of specific IgE.817
RISK PROFILES

A number of risk profile tools aimed at identifying which wheezing children aged 5 years and younger are at high risk of developing persistent asthma symptoms have been evaluated for use in clinical practice. However, these tools have shown limited performance for clinical practice. Only three prediction tools have been externally validated (Asthma Predictive Index818 from Tucson, USA, Prevention and Incidence of Asthma and Mite Allergy (PIAMA) index803 from the Netherlands, and Leicester tool819 from the UK), and a systematic review has shown that these tools have poor predictive accuracy, with variation in sensitivity and positive predictive value.820 Larger predictive studies using more advanced statistical methods, and with objective measurements for asthma diagnosis, are probably needed to propose a practical tool in clinical care to predict persistent asthma in recurrent wheezers in infancy and preschool age. The role of these tools is to help identify children at greater risk of developing persistent asthma symptoms, not as criteria for the diagnosis of asthma in young children. Each tool demonstrates different performance characteristics with varying criteria used to identify risk.821

DIFFERENTIAL DIAGNOSIS

A definite diagnosis of asthma in this young age group is challenging but has important clinical consequences. It is particularly important in this age group to consider and exclude alternative causes that can lead to symptoms of wheeze, cough, and breathlessness before confirming an asthma diagnosis (Box 10-4). 822

Box 10-4. Common differential diagnoses of asthma in children 5 years and younger

<table>
<thead>
<tr>
<th>Condition</th>
<th>Typical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent viral respiratory tract infections</td>
<td>Mainly cough, runny congested nose for <10 days; no symptoms between infections</td>
</tr>
<tr>
<td>Gastroesophageal reflux</td>
<td>Cough when feeding; recurrent chest infections; vomits easily especially after large feeds; poor response to asthma medications</td>
</tr>
<tr>
<td>Foreign body aspiration</td>
<td>Episode of abrupt, severe cough and/or stridor during eating or play; recurrent chest infections and cough; focal lung signs</td>
</tr>
<tr>
<td>Pertussis</td>
<td>Protracted paroxysms of coughing, often with stridor and vomiting</td>
</tr>
<tr>
<td>Persistent bacterial bronchitis</td>
<td>Persistent wet cough; poor response to asthma medications</td>
</tr>
<tr>
<td>Tracheomalacia</td>
<td>Noisy breathing when crying or eating, or during upper airway infections (noisy inspiration if extrathoracic or expiration if intrathoracic); harsh cough; inspiratory or expiratory retraction; symptoms often present since birth; poor response to asthma medications</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Persistent noisy respirations and cough; fever unresponsive to normal antibiotics; enlarged lymph nodes; poor response to bronchodilators or inhaled corticosteroids; contact with someone who has tuberculosis</td>
</tr>
<tr>
<td>Congenital heart disease</td>
<td>Cardiac murmur; cyanosis when eating; failure to thrive; tachycardia; tachypnea or hepatomegaly; poor response to asthma medications</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>Cough starting shortly after birth; recurrent chest infections; failure to thrive (malabsorption); loose greasy bulky stools</td>
</tr>
<tr>
<td>Condition</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Primary ciliary dyskinesia</td>
<td>Cough and recurrent chest infections; neonatal respiratory distress, chronic ear infections and persistent nasal discharge from birth; poor response to asthma medications; situs inversus occurs in about 50% of children with this condition</td>
</tr>
<tr>
<td>Vascular ring</td>
<td>Persistently noisy breathing; poor response to asthma medications</td>
</tr>
<tr>
<td>Bronchopulmonary dysplasia</td>
<td>Infant born prematurely; very low birth weight; needed prolonged mechanical ventilation or supplemental oxygen; difficulty with breathing present from birth</td>
</tr>
<tr>
<td>Immune deficiency</td>
<td>Recurrent fever and infections (including non-respiratory); failure to thrive</td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11).

Box 10-5. Key indications for referral of a child 5 years or younger for expert advice

Any of the following features in a child 5 years or younger suggest an alternative diagnosis and indicate the need for further investigations:

- Failure to thrive
- Neonatal or very early onset of symptoms (especially if associated with failure to thrive)
- Vomiting associated with respiratory symptoms
- Continuous wheezing
- Failure to respond to asthma medications (inhaled ICS, oral steroids or SABA)
- No association of symptoms with typical triggers, such as viral URTI
- Focal lung or cardiovascular signs, or finger clubbing
- Hypoxemia outside context of viral illness.
11. Assessment and management of asthma in children 5 years and younger

KEY POINTS

- The goals of asthma management in young children are similar to those in older patients:
 - To achieve best possible control of symptoms and maintain normal activity levels
 - To minimize the risk of asthma flare-ups, impaired lung development and medication side-effects.
- Wheezing episodes in young children should be treated initially with inhaled short-acting beta2 agonist (SABA), regardless of whether the diagnosis of asthma has been made. However, for initial episodes of wheeze in children <1 year in the setting of infectious bronchiolitis, SABAs are generally ineffective.
- A trial of low-dose inhaled corticosteroid (ICS) treatment should be given if the symptom pattern suggests asthma, alternative diagnoses have been excluded and respiratory symptoms are uncontrolled and/or wheezing episodes are frequent or severe.
- Response to treatment should be reviewed before deciding whether to continue it. If the response is absent or incomplete, reconsider alternative diagnoses.
- The choice of inhaler device should be based on the child’s age and capability. The preferred device is a pressurized metered-dose inhaler (pMDI) and spacer, with face mask for <3 years and mouthpiece for most children aged 3–5 years. Children should be switched from a face mask to mouthpiece as soon as they are able to demonstrate good technique.
- Review the need for asthma treatment frequently, as asthma-like symptoms remit in many young children. Advise parents/caregivers that asthma symptoms will often return later in life.

GOAL OF ASTHMA MANAGEMENT

As with other age groups, the goal of asthma management in young children is to achieve the best possible long-term asthma outcomes for the child:

- To achieve and maintain good long-term control of symptoms and maintain normal activity levels
- To minimize future risk; that is to reduce the risk of flare-ups, maintain lung function and lung development as close to normal as possible, and minimize medication side-effects.

Maintaining normal activity levels is particularly important in young children because engaging in play is important for their normal social and physical development. Avoiding flare-ups is important not only because of the health concerns, but also because of the disruption they cause to social and educational progress. It is important to also elicit the goals of the parent/caregiver, as these may differ from conventional medical goals.

The long-term goals of asthma management are achieved through a partnership between the parent/caregiver and the health professional team, with a cycle of:

- **Assess** (diagnosis, symptom control, risk factors, inhaler technique, adherence, parent preference)
- **Adjust** treatment (medications, non-pharmacological strategies, and treatment of modifiable risk factors)
- **Review** response including medication effectiveness and side-effects.
This is carried out in combination with education of parent/caregiver, and child (depending on the child’s age):

- Skills training for effective use of inhaler devices and encouragement of good adherence
- Monitoring of symptoms by parent/caregiver
- A written personalized asthma action plan.

ASSESSMENT OF ASTHMA

What does ‘asthma control’ mean?

Asthma control means the extent to which the manifestations of asthma are controlled, with or without treatment.\(^{38,84}\) It has two components (Box 11-1, p.188): the frequency and severity of symptoms (symptom control), and how asthma may affect them in the future, for example exacerbations in the next 12 months (future risk). In young children, as in older patients, both symptom control and future risk should be monitored (Evidence D). The rationale for this is described on p.41.

Assessing asthma symptom control

Defining satisfactory symptom control in children 5 years and younger depends on information derived from family members and careers, who may be unaware either of how often the child has experienced asthma symptoms, or that their respiratory symptoms represent uncontrolled asthma. Few objective measures to assess symptom control have been validated for children <4 years. The Childhood Asthma Control Test can be used for children aged 4–11 years.\(^{142}\) The Test for Respiratory and Asthma Control in Kids (TRACK) is a validated questionnaire for parent/caregiver completion for preschool-aged children with symptoms consistent with asthma; it includes both symptom control and courses of systemic corticosteroids in the previous year.\(^{146}\) However, children with no interval symptoms can still be at risk of exacerbations.

Box 6-5 shows a working schema for assessing asthma control in children ≤5 years, based on current expert opinion. It incorporates assessment of symptoms; the child’s level of activity and their need for reliever/rescue treatment; and assessment of risk factors for adverse outcomes (Evidence D). There are no validated tools for assessing symptom control over longer periods than 1–4 weeks, but ask the parent/caregiver whether the child’s recent status is usual for them.

REMISSION OF CHILDHOOD WHEEZING AND ASTHMA

Remission of asthma has been investigated extensively in the past, most commonly remission of childhood asthma off treatment. Definitions and criteria vary, but they commonly refer to either clinical remission (e.g., no asthma symptoms or exacerbations for a specific period) or complete (or pathophysiological) remission (e.g., also including normal lung function, airway responsiveness and/or inflammatory markers). There has been interest in remission off treatment, and remission on treatment, for example with biologic therapy for severe asthma.\(^{204-206}\)

The concept of clinical remission on treatment is consistent with the long-term goal of asthma management promoted by GINA (see p.50), to achieve the best possible asthma outcomes for the patient. This includes control of symptoms (long-term, not just in recent days/weeks), unimpaired physical activity, improved or stable optimized lung function, prevention of exacerbations (particularly those requiring OCS), avoidance of maintenance OCS, prevention of asthma deaths, and avoidance of adverse effects of asthma medications.

Reported rates of remission off treatment from studies in children with wheezing or asthma vary depending on the populations, definitions, and length of follow-up. For example, in one study, 59% of wheezing preschool children had no wheezing at 6 years,\(^{207}\) whereas in another study, only 15% of children with persistent wheezing at/after 9 years had no wheezing at 26 years.\(^{208}\) Clinical remission is more frequent than pathophysiological remission at all ages.\(^{209,210}\)

The most important predictors of asthma remission during school years in children with childhood wheezing are fewer, milder or decreasing frequency of symptomatic episodes,\(^{211-214}\) good or improving lung function, and less airway
hyperresponsiveness. Risk factors for persistence of childhood asthma include atopy, parental asthma/allergy, later onset of symptoms, wheezing without colds, and maternal smoking or tobacco smoke exposure.

Remission is not cure: asthma often recurs later in life, and children whose asthma has remitted have an increased risk of accelerated lung decline in adulthood, independent from, but synergistic with, tobacco smoking; and they may develop persistent airflow limitation, although this is less likely than for those whose asthma has persisted. This suggests the importance of monitoring lung function in people with remission of asthma symptoms.

To date, there is no evidence that interventions in childhood increase the likelihood of remission of asthma or reduce the risk of recurrence. However, treatment of asthma in childhood with ICS substantially reduces the burden of asthma on the child and family, reduces absence from school and social events, reduces the risk of exacerbations and hospitalizations, and allows the child to participate in normal physical activity.

Parents/caregivers often ask if their child will grow out of their asthma, and will not need treatment in the future. Current consensus advice for discussions like these includes:

- If the child has no reported symptoms, check for evidence of ongoing disease activity, e.g., wheezing; child avoiding physical activity; lung function if available
- Use language such as ‘asthma has gone quiet for the present’ to help avoid misunderstandings. If you use the term ‘remission’ with parents/caregivers, explain the medical meaning, because it is often interpreted as meaning a permanent cure
- Advise parents/caregivers that even if the child’s symptoms resolve completely, their asthma may recur later
- Emphasize the benefits of taking controller treatment for the child’s current health, their risk of asthma attacks, and their ability to participate in school and sporting activities, avoiding claims about effect of therapy on future asthma outcomes.

Research needs: clinical questions about remission off treatment in children focus on risk factors for asthma persistence and recurrence (including clinical, pathological, and genetic factors), the effect of risk reduction strategies on the likelihood of remission, whether monitoring after remission to allow early identification of asthma recurrence improves outcomes, and whether progression to persistent airflow limitation can be prevented. Clinical questions about remission on treatment (e.g., in children with severe asthma treated with biologic therapy) include whether inhaled anti-inflammatory therapy can be down-titrated.
Box 11-1. GINA assessment of asthma control in children 5 years and younger

<table>
<thead>
<tr>
<th>A. Recent symptom control (also ask about whole period since last visit)</th>
<th>Level of asthma symptom control</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the past 4 weeks, has the child had:</td>
<td>Level of symptom control</td>
</tr>
<tr>
<td>Daytime asthma symptoms for more than a few minutes,</td>
<td>Well controlled</td>
</tr>
<tr>
<td>more than once a week?</td>
<td>Partly controlled</td>
</tr>
<tr>
<td>Any activity limitation due to asthma? (Runs/plays less</td>
<td>Uncontrolled</td>
</tr>
<tr>
<td>than other children, tires easily during walks/playing?)</td>
<td></td>
</tr>
<tr>
<td>SABA reliever medication needed* more than once a week?</td>
<td></td>
</tr>
<tr>
<td>Any night waking or night coughing due to asthma?</td>
<td></td>
</tr>
</tbody>
</table>

| B. Future risk for poor asthma outcomes |

Risk factors for asthma exacerbations within the next few months
- Uncontrolled asthma symptoms
- One or more severe exacerbations (ED attendance, hospitalization, or course of OCS) in previous year
- The start of the child’s usual ‘flare-up’ season (especially if autumn/fall)
- Exposures: tobacco smoke; indoor or outdoor air pollution; indoor allergens (e.g., house dust mite, cockroach, pets, mold), especially in combination with viral infection
- Major psychological or socio-economic problems for child or family
- Poor adherence with ICS medication, or incorrect inhaler technique
- Outdoor pollution (NO₂ and particles)

Risk factors for persistent airflow limitation
- Severe asthma with several hospitalizations
- History of bronchiolitis

Risk factors for medication side-effects
- Systemic: Frequent courses of OCS, high-dose and/or potent ICS (for low ICS doses, see Box 11-3, p.191)
- Local: moderate-to high-dose or potent ICS; incorrect inhaler technique; failure to protect skin or eyes when using ICS by nebulizer or spacer with face mask

See list of abbreviations (p.11). * Excludes reliever taken before exercise. Before stepping up treatment, ensure that the child’s symptoms are due to asthma, and that the child has good inhaler technique and good adherence to existing treatment.

Assessing future risk of adverse outcomes

The relationship between symptom control and future risk of adverse outcomes, such as exacerbations (Box 6-5, p.182), has not been sufficiently studied in young children. Although exacerbations may occur in children after months of apparently good symptom control, the risk is greater if current symptom control is poor. Preschool children at high risk of asthma (based on modified API) who were treated with daily low-dose ICS experienced fewer days with asthma symptoms and a reduced risk of exacerbations than those receiving placebo.

The future risk of harm due to excessive doses of inhaled or systemic corticosteroids must also be avoided. This can be minimized by ensuring that the prescribed treatment is appropriate and reduced to the lowest dose that maintains satisfactory symptom control and minimizes exacerbations. The child’s height should be measured and recorded at least yearly, as growth velocity may be lower in the first 1–2 years of ICS treatment, and poorly controlled asthma can affect...
The minimum effective dose of ICS to maintain good asthma control should be used. If decreased growth velocity is seen, other factors should be considered, including poorly controlled asthma, frequent use of oral corticosteroids (OCS), and poor nutrition, and referral should be considered.

If ICS is delivered through a face-mask or nebulizer, the skin on the nose and around the mouth should be cleaned shortly after inhalation to avoid local side-effects such as steroid rash (reddening and atrophy).

MEDICATIONS FOR SYMPTOM CONTROL AND RISK REDUCTION

Choosing medications for children 5 years and younger

Good control of asthma can be achieved in the overwhelming majority of young children with a pharmacological intervention strategy. This should be developed in a partnership between the family/caregiver and the healthcare provider. As with older children and adults, medications comprise only one component of asthma management in young children; other key components include education, skills training for inhaler devices and adherence, non-pharmacological strategies including environmental control where appropriate, regular monitoring, and clinical review (see later sections in this chapter).

When recommending treatment for a young child, both general and individual questions apply (Box 3-4, p.54):

- **What is the ‘preferred’ medication option** at each treatment step to control asthma symptoms and minimize future risk? These decisions are based on data for efficacy, effectiveness and safety from clinical trials, and on observational data. Studies suggest that consideration of factors such as allergic sensitization and/or peripheral blood count may help to better identify which children are more likely to have a short-term response to ICS. However, further studies are needed to assess the applicability of these findings in a wider range of settings, particularly in areas where blood eosinophilia may reflect helminth infection rather than asthma or atopy.

- **How does this individual child differ from other children with asthma**, in terms of:
 - Response to previous treatment
 - Patient characteristics that contribute to symptoms or risk of flare-ups: e.g., clinical phenotype, risk factors for flare-ups, comorbidities including allergic rhinitis, environmental exposures
 - Preferences of the parent/caregiver (goals, beliefs and concerns about medications)
 - Practical issues (cost, inhaler technique and adherence)?

The following treatment recommendations for children of 5 years of age or younger are based on the available evidence and on expert opinion. Although the evidence is expanding it is still rather limited as most clinical trials in this age group have not characterized participants with respect to their symptom pattern, and different studies have used different outcomes and different definitions of exacerbations.

A stepwise treatment approach is recommended (Box 11-2, p.190), based on symptom patterns, risk of exacerbations and side-effects, and response to initial treatment. Generally, treatment includes the daily, long-term use of low-dose ICS treatment to keep asthma well controlled (see Box 11-3 for doses), and reliever medications for as-needed symptom relief. The choice of inhaler device is also an important consideration (Box 11-4, p.191).
Box 11-2. Personalized management of asthma in children 5 years and younger

GINA 2024 – Children 5 years and younger

Personalized asthma management:
Assess, Adjust, Review response

Asthma medication options:
Adjust treatment up and down for individual child’s needs

PREFERRED CONTROLLER CHOICE
(Insufficient evidence for daily controller)

Other controller options
(limited indications, or less evidence for efficacy or safety)

RELIEVER

CONSIDER THIS STEP FOR CHILDREN WITH:

<table>
<thead>
<tr>
<th>STEP 1</th>
<th>STEP 2</th>
<th>STEP 3</th>
<th>STEP 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily low dose inhaled corticosteroid (ICS) (see Box 11-3 for ICS dose ranges for pre-school children)</td>
<td>Consider intermittent short course ICS at onset of viral illness</td>
<td>Double ‘low dose’ ICS (See Box 11-3)</td>
<td>Continue controller & refer for specialist assessment</td>
</tr>
<tr>
<td>Low dose ICS + LTRA</td>
<td>Add LTRA, or increase ICS frequency, or add intermittent ICS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As-needed short-acting beta-agonist

See list of abbreviations (p.11). For ICS doses in children, see Box 11-3 (p.191) † If prescribing LTRA, advise parent/caregiver about risk of neuropsychiatric adverse effects.
Box 11-3. Low daily doses of inhaled corticosteroids for children 5 years and younger

This is not a table of equivalence, but instead, suggestions for 'low' total daily doses for the ICS treatment recommendations for children aged 5 years and younger in Box 11-2 (p.190), based on available studies and product information. Data on comparative potency are not readily available, particularly for children.

This table does NOT imply potency equivalence. For example, if you switch a child’s treatment from a 'low' dose of one ICS to a 'low' dose of another ICS, this may represent a decrease (or increase) in potency. The child’s asthma may become unstable (or they may be at increased risk of adverse effects).

Children should be monitored to ensure stability after any change of treatment. Doses and potency may also differ by country, depending on local products, inhaler devices, regulatory labelling and clinical guidelines. The doses listed here are the lowest approved doses for which safety and effectiveness have been adequately studied in this age group.

Low-dose ICS provides most of the clinical benefit for most children with asthma. Higher doses are associated with an increased risk of local and systemic side-effects, which must be balanced against potential benefits.

<table>
<thead>
<tr>
<th>Inhaled corticosteroid</th>
<th>Low total daily dose in mcg (age-group with adequate safety and effectiveness data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDP (pMDI, standard particle, HFA)</td>
<td>100 (ages 5 years and older)</td>
</tr>
<tr>
<td>BDP (pMDI, extrafine particle, HFA)</td>
<td>50 (ages 5 years and older)</td>
</tr>
<tr>
<td>Budesonide nebulized</td>
<td>500 (ages 1 year and older)</td>
</tr>
<tr>
<td>Fluticasone propionate (pMDI, standard particle, HFA)</td>
<td>50 (ages 4 years and older)</td>
</tr>
<tr>
<td>Fluticasone furoate (DPI)</td>
<td>Not sufficiently studied in children 5 years and younger</td>
</tr>
<tr>
<td>Mometasone furoate (pMDI, standard particle, HFA)</td>
<td>100 (ages 5 years and older)</td>
</tr>
<tr>
<td>Ciclesonide (pMDI, extrafine particle, HFA)</td>
<td>Not sufficiently studied in children 5 years and younger</td>
</tr>
</tbody>
</table>

BDP: beclometasone dipropionate. For other abbreviations see p.11. In children, pMDI should always be used with a spacer.

Box 11-4. Choosing an inhaler device for children 5 years and younger

<table>
<thead>
<tr>
<th>Age</th>
<th>Preferred device</th>
<th>Alternate device</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–3 years</td>
<td>Pressurized metered-dose inhaler plus dedicated spacer with face mask</td>
<td>Nebulizer with face mask</td>
</tr>
<tr>
<td>4–5 years</td>
<td>Pressurized metered-dose inhaler plus dedicated spacer with mouthpiece</td>
<td>Pressurized metered-dose inhaler plus dedicated spacer with face mask or nebulizer with mouthpiece or face mask</td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11). If nebulizer is used, follow infection control procedures, as respiratory viruses can be dispersed by up to 1 meter. See p.109 and Box 5-1 (p.109) for other factors to consider in choice of an inhaler device.

Which children should be prescribed regular controller treatment?

Intermittent or episodic wheezing of any severity may represent an isolated viral-induced wheezing episode, an episode of seasonal or allergen-induced asthma, or unrecognized uncontrolled asthma. The initial treatment of wheezing is identical for all of these – a SABA every 4–6 hours as needed until symptoms disappear, usually within 1 to 7 days. Further treatment of the acute wheezing episodes themselves is described below (see Acute asthma exacerbations in children 5 years and younger, p.200). However, uncertainty surrounds the addition of other medications in these children, especially when the nature of the episode is unclear. In general, the following principles apply:
If the history and symptom pattern suggest a diagnosis of asthma (Box 10-2, p.180; Box 10-3, p.180) and respiratory symptoms are uncontrolled (Box 11-1, p.188) and/or wheezing episodes are frequent (e.g., three or more episodes in a season), regular controller treatment (usually maintenance low-dose ICS) should be initiated (Step 2, Box 11-2, p.190) and the response evaluated (Evidence D). Regular ICS treatment may also be indicated in a child with less frequent, but more severe episodes of viral-induced wheeze (Evidence D).

If the diagnosis of asthma is in doubt, and inhaled SABA therapy or courses of antibiotics need to be repeated frequently, e.g., more than every 6–8 weeks, a trial of regular ICS treatment should be considered to confirm whether the symptoms are due to asthma (Evidence D). Referral for specialist opinion should also be considered at this stage. It is important to discuss the decision to prescribe controller treatment and the choice of treatment with the child’s parents or caregivers. They should be aware of both the relative benefits and risks of the treatments, and the importance of maintaining normal activity levels for their child’s normal physical and social development. Although effects of ICS on growth velocity are seen in pre-pubertal children in the first 1–2 years of treatment, this is not progressive or cumulative, and the one study that examined long-term outcomes showed a difference of only 0.7% in adult height. Poorly controlled asthma itself adversely affects adult height.140

Treatment steps to control asthma symptoms and minimize future risk for children 5 years and younger

Asthma treatment in young children follows a stepwise approach (Box 11-2), with medication adjusted up or down to achieve good symptom control and minimize future risk of exacerbations and medication side-effects. The need for controller treatment should be re-assessed regularly.

Before considering a step-up of controller treatment

If symptom control is poor and/or exacerbations persist despite 3 months of adequate controller therapy, check the following before any step up in treatment is considered:

- Confirm that the symptoms are due to asthma rather than a concomitant or alternative condition (Box 10-4, p.183). Refer for expert assessment if the diagnosis is in doubt.
- Check and correct inhaler technique.
- Confirm good adherence with the prescribed dose.
- Consider trial of one of the other treatment options for that step, as many children may respond to one of the options.
- Enquire about risk factors such as allergen or tobacco smoke exposure (Box 11-1, p.188).

ASTHMA TREATMENT STEPS FOR CHILDREN AGED 5 YEARS AND YOUNGER

Step 1: Preferred option: as-needed inhaled short-acting beta2 agonist (SABA)

All children who experience wheezing episodes should be provided with inhaled SABA for relief of symptoms (Evidence D), although it is not effective in all children. See Box 11-4 (p.191) for choice of inhaler device. Use of SABA for the relief of symptoms on average more than twice a week over a 1-month period indicates the need for a trial of low-dose ICS treatment. Initial episodes of wheeze in children <1 year often occur in the setting of infectious bronchiolitis, and this should be managed according to local bronchiolitis guidelines. SABAs are generally ineffective for bronchiolitis.828

Other options

Oral bronchodilator therapy is not recommended due to its slower onset of action and higher rate of side-effects, compared with inhaled SABA (Evidence D).

For children with intermittent viral-induced wheeze and no interval symptoms, particularly those with underlying atopy (positive for modified API) in whom inhaled SABA medication is not sufficient, intermittent high-dose ICS may be considered (723,829,830) (see Management of worsening asthma and exacerbations, p.158), but because of the risk of side-effects, this should only be considered if the physician is confident that the treatment will be used appropriately.
Step 2: Preferred option: regular daily low-dose ICS plus as-needed SABA

Regular daily, low-dose ICS (Box 11-3, p.191) is recommended as the preferred initial treatment to control asthma in children 5 years and younger (Evidence A).\(^{831-833}\) This initial treatment should be given for at least 3 months to establish its effectiveness in achieving good asthma control.

Other options

In young children with persistent asthma, regular treatment with a leukotriene receptor antagonist (LTRA) modestly reduces symptoms and need for oral corticosteroids compared with placebo.\(^{834}\) However, for young children with recurrent viral-induced wheezing, a review concluded that neither regular nor intermittent LTRA reduces OCS requiring exacerbations (Evidence A).\(^ {835}\) A further systematic review found that in preschool children with asthma or recurrent wheezing, daily ICS was more effective in improving symptom control and reducing exacerbations than regular LTRA monotherapy.\(^ {836}\) Parents/caregivers should be counselled about the potential adverse effects of montelukast on sleep and behavior, and health professionals should consider the benefits and risks of side effects before prescribing.\(^ {295}\)

For preschool children with asthma characterized by frequent viral-induced wheezing and interval asthma symptoms, as-needed (prn) or episodic ICS\(^ {837}\) may be considered, but a trial of regular daily low-dose ICS should be undertaken first. The effect on exacerbation risk seems similar for regular daily low-dose and episodic high-dose ICS.\(^ {838}\) See also Initial home management of asthma exacerbations (p.197).

If good asthma control is not achieved with a given therapy, trials of the alternative Step 2 therapies are recommended prior to moving to Step 3.\(^ {826}\)

Step 3: Double the ‘low’ daily ICS dose plus as-needed SABA. Consider specialist referral

If 3 months of initial therapy with a low-dose ICS fails to control symptoms, or if exacerbations continue to occur, check the following before any step up in treatment is considered:

- Confirm that the symptoms are due to asthma rather than a concomitant or alternative condition (Box 10-4, p.183).
- Check and correct inhaler technique. Consider alternative delivery systems if indicated.
- Confirm good adherence with the prescribed dose.
- Enquire about risk factors, such as exposure to allergens or tobacco smoke (Box 11-1, p.188).

Preferred option: medium-dose ICS (double the ‘low’ daily dose)

Doubling the initial low dose of ICS may be the best option (Evidence C). Assess response after 3 months. The child should be referred for expert assessment if symptom control remains poor and/or flare-ups persist, or if side-effects of treatment are observed or suspected.

Other options

Addition of a LTRA to low-dose ICS may be considered, based on data from older children (Evidence D). The relative cost of different treatment options in some countries may be relevant to controller choices for children. Note the concern about potential neuropsychiatric adverse effects with montelukast.\(^ {295}\)

Not recommended

There are insufficient data about the efficacy and safety of ICS in combination with a long-acting beta\(_2\) agonist (LABA) in children <4 years old to recommend their use. A short-term (8 week) placebo-controlled study did not show any significant difference in symptoms between combination fluticasone propionate-salmeterol versus fluticasone propionate alone; no additional safety signals were noted in the group receiving LABA.\(^ {839}\)
Step 4: Continue controller treatment and refer for expert assessment

If the Step 3 approach of doubling the initial dose of ICS fails to achieve and maintain good asthma control, carefully reassess inhaler technique and medication adherence as these are common problems in this age group. In addition, reassess and address control of environmental factors where relevant, and reconsider the asthma diagnosis.

Other options

The best treatment for this population has not been established. If the diagnosis of asthma has been confirmed, options to consider, with specialist advice, are:

- Further increase the dose of ICS for a few weeks until the control of the child’s asthma improves (Evidence D). Monitor for side-effects.
- Add LTRA (data based on studies in older children, Evidence D). Benefits, and risks of side effects, should be considered, as described previously; inform the parent/caregiver about the potential risk of neuropsychiatric adverse effects. 572
- Add long-acting beta agonist (LABA) in combination with ICS; data based on studies in children ≥4 years of age.
- Add a low dose of oral corticosteroid (for a few weeks only) until asthma control improves (Evidence D); monitor for side-effects.
- Add intermittent high-dose ICS at onset of respiratory illnesses to the regular daily ICS if exacerbations are the main problem (Evidence D).

The need for additional controller treatment should be re-evaluated at each visit and maintained for as short a period as possible, with consideration of potential risks and benefits. Treatment goals and their feasibility should be reconsidered and discussed with the child’s family/career.

REVIEWING RESPONSE AND ADJUSTING TREATMENT

Assessment at every visit should include asthma symptom control and risk factors (Box 11-1, p.188), and side-effects. The child’s height should be measured every year, or more often. Asthma-like symptoms remit in a substantial proportion of children of 5 years or younger 840-842 so the need for continued controller treatment should be regularly assessed (e.g., every 3–6 months) (Evidence D). If therapy is stepped-down or discontinued, schedule a follow-up visit 3–6 weeks later to check whether symptoms have recurred, as therapy may need to be stepped-up or reinstituted (Evidence D).

Marked seasonal variations may be seen in symptoms and exacerbations in this age-group. For children with seasonal symptoms whose daily long-term controller treatment is to be discontinued (e.g., 4 weeks after their season ends), the parent/caregiver should be provided with a written asthma action plan detailing specific signs of worsening asthma, the medications that should be initiated to treat it, and when and how to contact medical care.

CHOICE OF INHALER DEVICE

Inhaled therapy constitutes the cornerstone of asthma treatment in children 5 years and younger. General information about inhaler devices, and the issues that should be considered, are found in Section 5 (p.108) and in Box 5-1 (p.109). These include, first, choosing the right medication(s) for the child to control symptoms, allow normal activity, and reduce the risk of severe exacerbations; considering which delivery device is available; whether they can use it correctly after training; and, if more than one type of inhaler device is available, their relative environmental impact.

For children aged 5 years and younger, the preferred delivery system is a pressurized metered-dose inhaler (pMDI) with a valved spacer (Box 11-4, p.191), with or without a face mask, depending on the child’s age (Evidence A). 843 This recommendation is based on studies with beta2 agonists. The spacer device should have documented efficacy in young children. The dose delivered may vary considerably between spacers, so consider this if changing from one spacer to another.
The only possible inhalation technique in young children is tidal breathing. The optimal number of breaths required to empty the spacer depends on the child’s tidal volume, and the dead space and volume of the spacer. Generally, 5–10 breaths will be sufficient per actuation. The way a spacer is used can markedly affect the amount of drug delivered:

- Spacer size may affect the amount of drug available for inhalation in a complex way depending on the drug prescribed and the pMDI used. Young children can use spacers of all sizes, but theoretically a lower volume spacer (<350 mL) is advantageous in very young children.
- A single pMDI actuation should be delivered at a time, with the inhaler shaken in between. Multiple actuations into the spacer before inhalation may markedly reduce the amount of drug inhaled.
- Delay between actuating the pMDI into the spacer and inhalation may reduce the amount of drug available. This varies between spacers, but to maximize drug delivery, inhalation should start as soon as possible after actuation. If a healthcare provider or a carer is giving the medication to the child, they should actuate the pMDI only when the child is ready and the spacer is in the child’s mouth.
- If a face mask is used it must be fitted tightly around the child’s mouth and nose, to avoid loss of drug.
- Ensure that the valve is moving while the child is breathing through the spacer.
- Static charge may accumulate on some plastic spacers, attracting drug particles and reducing lung delivery. This charge can be reduced by washing the spacer with detergent (without rinsing) and allowing it to air dry, but it may re-accumulate over time. Spacers made of anti-static materials or metals are less subject to this problem. If a patient or healthcare provider carries a new plastic spacer for emergency use, it should be regularly washed with detergent (e.g., monthly) to reduce static charge.
- Nebulizers, the only viable alternative delivery systems in children, are reserved for the minority of children who cannot be taught effective use of a spacer device. If a nebulizer is used for delivery of ICS, it should be used with a mouthpiece to avoid the medication reaching the eyes. If a nebulizer is used, follow local infection control procedures.

ASTHMA SELF-MANAGEMENT EDUCATION FOR CARERS OF YOUNG CHILDREN

Asthma self-management education should be provided to family members and carers of wheezy children 5 years and younger when wheeze is suspected to be caused by asthma. An educational program should contain:

- A basic explanation about asthma and the factors that influence it
- Training about correct inhalation technique
- Information on the importance of the child’s adherence to the prescribed medication regimen
- A written asthma action plan.

Crucial factors for a successful asthma education program include a partnership between patient/carer and healthcare providers, with a high level of agreement regarding the goals of treatment for the child, and intensive follow-up (Evidence D).

Written asthma action plans

Asthma action plans should be provided for the family/carers of all children with asthma, including those aged 5 years and younger (Evidence D). Action plans, developed through collaboration between an asthma educator, the healthcare provider and the family, have been shown to be of value in older children, although they have not been extensively studied in children of 5 years and younger. A written asthma action plan includes:

- A description of how the parent or caregiver can recognize when symptom control is deteriorating
- The medications to administer
- When and how to obtain medical care, including telephone numbers of services available for emergencies (e.g., doctors’ offices, emergency departments and hospitals, ambulance services and emergency pharmacies).

Details of treatments that can be initiated at home are provided in Section 12.
12. Management of worsening asthma and exacerbations in children 5 years and younger

KEY POINTS

Symptoms of exacerbation in young children
- Early symptoms of exacerbations in young children may include increased symptoms; increased coughing, especially at night; lethargy or reduced exercise tolerance; impaired daily activities including feeding; and a poor response to reliever medication.

Home management in a written asthma action plan
- Give a written asthma action plan to parents/caregivers of young children with asthma so they can recognize an impending severe attack, start treatment, and identify when urgent hospital treatment is required.
- Initial treatment at home is with inhaled short-acting beta2 agonist (SABA), with review after 1 hour or earlier.
- Parents/caregivers should seek urgent medical care if the child is acutely distressed, lethargic, fails to respond to initial bronchodilator therapy, or is worsening, especially in children <1 year of age.
- Medical attention should be sought on the same day if inhaled SABA is needed more often than 3-hourly or for more than 24 hours.
- There is no compelling evidence to support parent/caregiver-initiated oral corticosteroids.

Management of exacerbations in primary care or acute care facility
- Assess severity of the exacerbation while initiating treatment with SABA (2–6 puffs every 20 minutes for first hour) and oxygen (to maintain saturation 94–98%).
- Recommend immediate transfer to hospital if there is no response to inhaled SABA within 1–2 hours; if the child is unable to speak or drink, has a respiratory rate >40/minute or is cyanosed, if resources are lacking in the home, or if oxygen saturation is <92% on room air.
- Consider oral prednisone/prednisolone 1–2 mg/kg/day for children attending an Emergency Department (ED) or admitted to hospital, up to a maximum of 20 mg/day for children aged 0–2 years, and 30 mg/day for children aged 3–5 years, for up to 5 days; or dexamethasone 0.6 mg/kg/day for 2 days. If there is failure of resolution, or relapse of symptoms with dexamethasone, consideration should be given to switching to prednisolone.
- Be aware that oxygen saturation by pulse oximetry may be overestimated in people with dark skin color.

Arrange early follow-up after an exacerbation
- Children who have experienced an asthma exacerbation are at risk of further exacerbations. Arrange follow-up within 1–2 days of an exacerbation and again 1–2 months later to plan ongoing asthma management.

DIAGNOSIS OF EXACERBATIONS

A flare-up or exacerbation of asthma in children 5 years and younger is defined as an acute or sub-acute deterioration in symptom control that is sufficient to cause distress or risk to health, and necessitates a visit to a healthcare provider or requires treatment with systemic corticosteroids. In pediatric literature, the term ‘episode’ is commonly used, but understanding of this term by parents/caregivers is not known.
Early symptoms of an exacerbation may include any of the following:

- Onset of symptoms of respiratory tract infection
- An acute or sub-acute increase in wheeze and shortness of breath
- An increase in coughing, especially while the child is asleep
- Lethargy or reduced exercise tolerance
- Impairment of daily activities, including feeding
- A poor response to reliever medication.

In a study of children aged 2–5 years, the combination of increased daytime cough, daytime wheeze, and night-time beta2 agonist use was a strong predictor at a group level of an imminent exacerbation (1 day later). This combination predicted around 70% of exacerbations, with a low false positive rate of 14%. In contrast, no individual symptom was predictive of an imminent asthma exacerbation.845

Upper respiratory symptoms frequently precede the onset of an asthma exacerbation, indicating the important role of viral URTI in precipitating exacerbations in many, although not all, children with asthma. In a randomized controlled trial of acetaminophen versus ibuprofen, given for pain or fever in children with mild persistent asthma, there was no evidence of a difference in the subsequent risk of flare-ups or poor symptom control.826

INITIAL HOME MANAGEMENT OF ASTHMA EXACERBATIONS

Initial management includes an action plan to enable the child’s family members and carers to recognize worsening asthma and initiate treatment, recognize when it is severe, identify when urgent hospital treatment is necessary, and provide recommendations for follow up (Evidence D). The action plan should include specific information about medications and dosages and when and how to access medical care.

Need for urgent medical attention

Parents/caregivers should be advised to seek medical attention immediately if:

- The child is acutely distressed
- The child’s symptoms are not relieved promptly by inhaled bronchodilator
- The period of relief after doses of SABA becomes progressively shorter
- A child younger than 1 year requires repeated inhaled SABA over several hours.

Initial treatment at home

Inhaled SABA via a mask or spacer, and review response

The parent/caregiver should initiate treatment with two puffs of inhaled SABA (200 mcg salbutamol [albuterol] or equivalent), given one puff at a time via a spacer device with or without a facemask (Evidence D). This may be repeated a further two times at 20-minute intervals, if needed. The child should be observed by the family/carer and, if improving, maintained in a restful and reassuring atmosphere for an hour or more. Medical attention should be sought urgently if any of the features listed above apply; or on the same day if more than 6 puffs of inhaled SABA are required for symptom relief within the first 2 hours, or if the child has not recovered after 24 hours.

Family/carer-initiated corticosteroids

Evidence to support the initiation of oral corticosteroid (OCS) treatment by family/carers in the home management of asthma exacerbations in children is weak,846-850 despite this practice in some regions. Preemptive episodic high-dose nebulized ICS may reduce exacerbations in children with intermittent viral triggered wheezing.833 However, because of the high potential for side-effects, especially if the treatment is continued inappropriately or is given frequently, family-administered high-dose ICS should be considered only where the healthcare provider is confident that the medications will be used appropriately, and the child is closely monitored for side-effects.
Leukotriene receptor antagonists

In children aged 2–5 years with intermittent viral wheezing, one study found that a short course of an oral LTRA (for 7–20 days, commenced at the start of an URTI or the first sign of asthma symptoms) reduced symptoms, healthcare utilization and time off work for the carer. In contrast another study found no significant effect with LTRA, compared with placebo, on episode-free days (primary outcome), OCS use, healthcare utilization, quality of life or hospitalization in children with or without a positive Asthma Predictive Index (API). However, activity limitation and a symptom trouble score were significantly improved, particularly in children with a positive API. Parents/caregivers should be counseled about the risk of adverse effects on sleep, behavior and mental health with montelukast.

PRIMARY CARE OR HOSPITAL MANAGEMENT OF ACUTE ASTHMA EXACERBATIONS IN CHILDREN 5 YEARS OR YOUNGER

Assessment of exacerbation severity

Conduct a brief history and examination concurrently with the initiation of therapy (Box 12-1, p.199). The presence of any of the features of a severe exacerbation listed in Box 12-2 are an indication of the need for urgent treatment and immediate transfer to hospital (Evidence D). Oxygen saturation from pulse oximetry of <92% on presentation (before oxygen or bronchodilator treatment) is associated with high morbidity and likely need for hospitalization; saturation of 92–95% is also associated with higher risk. Note that oxygen saturation by pulse oximetry may be overestimated in people with dark skin color. Agitation, drowsiness and confusion are features of cerebral hypoxemia. A quiet chest on auscultation indicates minimal ventilation, insufficient to produce a wheeze.

Several clinical scoring systems such as PRAM (Preschool Respiratory Assessment Measure) and PASS (Pediatric Asthma Severity Score) have been developed for assessing the severity of acute asthma exacerbations in children.
Box 12-1. Management of acute asthma or wheezing in children 5 years and younger

PRIMARY CARE
- Child presents with acute or sub-acute asthma exacerbation or acute wheezing episode

ASSESS the CHILD
- Consider other diagnoses
- Risk factors for hospitalization
- Severity of exacerbation?

MILD or MODERATE
- Breathless, agitated
- Pulse rate ≤180 bpm (0-3 yrs), or ≤150 bpm (4-5 yrs)
- Oxygen saturation ≤92%

START TREATMENT
- Salbutamol 100 mcg two puffs by pMDI+spacers or 2.5mg by nebulizer
- Repeat every 20 min for the first hour if needed
- Controlled oxygen if needed and available: target saturation 94-98%
- Consider adding ipratropium 1-2 puffs

MONITOR CLOSELY for 1-2 hours
- Transfer to high level care if any of:
 - Lack of response to salbutamol over 1-2 hrs
 - Any signs of severe exacerbation
 - Increasing respiratory rate
 - Decreasing oxygen saturation

CONTINUE TREATMENT IF NEEDED
- Monitor closely as above
- If symptoms recur within 3-4 hrs
 - Give extra salbutamol 2.3 puffs per hour
 - Give prednisolone 2mg/kg (max. 20mg for <2 yrs; max. 30mg for 2-6 yrs) orally

DISCHARGE/FOLLOW-UP PLANNING
- Ensure that resources at home are adequate
- Reliever: continue as needed
- Controller: consider need for, or adjustment of, regular controller
- Check inhaler technique and adherence
- Follow up: within 1-2 working days; prednisolone for ≤2-6 days
- Provide and explain action plan

TRANSFER TO HIGH LEVEL CARE (e.g. ICU)
- While waiting give:
 - Salbutamol 100 mcg 6 puffs by pMDI+spacers or 2.5mg nebulizer, Repeat every 20 min as needed.
 - Oxygen (if available) to keep saturation 94-96%
 - Prednisolone 2mg/kg (max. 20 mg for <2 yrs; max. 30 mg for 2-6 yrs) as a starting dose
 - Consider 1-2 doses of nebulized ipratropium bromide 250mcg

Worsening, or lack of improvement
- Transfer to high level care

FOLLOW UP VISITS
- Review symptoms and signs: is the exacerbation resolving? Should prednisolone be continued?
- Reliever: Reduce to as-needed
- Controller: Continue or adjust depending on cause of exacerbation, and duration of need for extra salbutamol
- Risk factors: Check and correct modifiable risk factors that may have contributed to exacerbation, including inhaler technique and adherence
- Action plan: Is it understood? Was it used appropriately? Does it need modification?
- Schedule next follow up visit

See list of abbreviations (p.11).
Box 12-2. Initial assessment of acute asthma exacerbations in children 5 years and younger

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Mild</th>
<th>Severe*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altered consciousness</td>
<td>No</td>
<td>Agitated, confused or drowsy</td>
</tr>
<tr>
<td>Oximetry on presentation (SaO₂)**</td>
<td>>95%</td>
<td><92%</td>
</tr>
<tr>
<td>Speech†</td>
<td>Sentences</td>
<td>Words</td>
</tr>
<tr>
<td>Pulse rate</td>
<td><100 beats/minute</td>
<td>>180 beats/minute (0–3 years)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>150 beats/minute (4–5 years)</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>≤40/minute</td>
<td>>40/minute</td>
</tr>
<tr>
<td>Central cyanosis</td>
<td>Absent</td>
<td>Likely to be present</td>
</tr>
<tr>
<td>Wheeze intensity</td>
<td>Variable</td>
<td>Chest may be quiet</td>
</tr>
</tbody>
</table>

See list of abbreviations (p.11).

*Any of these features indicates a severe asthma exacerbation. **Oximetry before treatment with oxygen or bronchodilator. Note potential for overestimation of oxygen saturation with pulse oximetry in people with dark skin color.† The child’s developmental stage and usual capability must be considered.

Indications for immediate transfer to hospital

Children with features of a severe exacerbation that fail to resolve within 1–2 hours despite repeated dosing with inhaled SABA must be referred to hospital for observation and further treatment (Evidence D; Box 12-3). Other indications are respiratory arrest or impending arrest; lack of supervision in the home or doctor’s office; and recurrence of signs of a severe exacerbation within 48 hours (particularly if treatment with OCS has already been given). In addition, early medical attention should be sought for children with a history of severe life-threatening exacerbations, and those aged less than 2 years, as the risk of dehydration and respiratory fatigue is increased (Box 12-4, p.201).

Box 12-3. Indications for immediate transfer to hospital for children 5 years and younger

Immediate transfer to hospital is indicated if a child ≤5 years with asthma has ANY of the following:

- **At initial or subsequent assessment:**
 - Child is unable to speak or drink
 - Cyanosis
 - Respiratory rate >40 per minute
 - Oxygen saturation <92% when breathing room air (note potential for overestimation of oxygen saturation with pulse oximetry in people with dark skin color.
 - Silent chest on auscultation

- **Lack of response to initial bronchodilator treatment:**
 - Lack of response to 6 puffs of inhaled salbutamol [albuterol] (2 separate puffs, repeated 3 times) over 1–2 hours
 - Persisting tachypnea* despite three administrations of inhaled SABA, even if the child shows other clinical signs of improvement

- **Social environment that limits delivery of acute treatment, or parent/caregiver unable to manage acute asthma at home.**

During transfer to hospital, continue to give inhaled SABA, oxygen (if available) to maintain saturation 94–98%, and give systemic corticosteroids (see Box 12-1, p.199)

See list of abbreviations (p.11). *Normal respiratory rates: <60 breaths/minute in children 0–2 months; <50 breaths/minute in children 2–12 months; <40 breaths/minute in children 1–5 years.
Box 12-4. Initial emergency department management of asthma exacerbations in children 5 years and younger

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Dose and administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplemental oxygen</td>
<td>Delivered by face nasal prongs or mask, as indicated to maintain oxygen saturation at 94–98%</td>
</tr>
<tr>
<td>Short-acting beta₂ agonist (SABA)</td>
<td>2–6 puffs of salbutamol [albuterol] by spacer, or 2.5 mg by nebulizer, every 20 minutes for first hour*, then reassess severity. If symptoms persist or recur, give an additional 2–3 puffs per hour. Admit to hospital if >10 puffs required in 3–4 hours.</td>
</tr>
<tr>
<td>Systemic corticosteroids</td>
<td>Give initial dose of oral prednisolone (1–2 mg/kg up to a maximum 20 mg for children <2 years old; 30 mg for children 2–5 years) OR, intravenous methylprednisolone 1 mg/kg 6-hourly on day 1</td>
</tr>
</tbody>
</table>

Additional options in the first hour of treatment

- Ipratropium bromide:
 - Consider adding 1–2 puffs of ipratropium bromide by pMDI and spacer
 - For children with moderate-severe exacerbations with a poor response to initial SABA, give nebulized ipratropium bromide 250 mcg every 20 minutes for 1 hour only

- Magnesium sulfate:
 - Consider nebulized isotonic magnesium sulfate (150 mg) 3 doses in the first hour of treatment for children aged ≥2 years with severe exacerbation (Box 12-2, p.200)

See list of abbreviations (p.11). *If inhalation is not possible an intravenous bolus of terbutaline 2 mcg/kg may be given over 5 minutes, followed by continuous infusion of 5 mcg/kg/hour (Evidence C). The child should be closely monitored, and the dose should be adjusted according to clinical improvement and side-effects. See below for additional and ongoing treatment, including maintenance ICS. If a nebulizer is used, follow infection control procedures.

Emergency treatment and initial pharmacotherapy

Oxygen

Treat hypoxemia urgently with oxygen by face mask to achieve and maintain percutaneous oxygen saturation 94–98% (Evidence A). Note the potential for overestimation of oxygen saturation in people with dark skin color. To avoid hypoxemia during changes in treatment, children who are acutely distressed should be treated immediately with oxygen and SABA (2.5 mg of salbutamol or equivalent diluted in 3 mL of sterile normal saline) delivered by an oxygen-driven nebulizer (if available). This treatment should not be delayed, and may be given before the full assessment is completed. Transient hypoxemia due to ventilation/perfusion mismatch may occur during treatment with SABAs.

Inhaled bronchodilator therapy

The initial dose of inhaled SABA may be given by a pMDI with spacer and mask or mouthpiece or an air-driven nebulizer; or, if oxygen saturation is low, by an oxygen-driven nebulizer (as described above). For most children, pMDI plus spacer is favored as it is more efficient than a nebulizer for bronchodilator delivery (Evidence A) and nebulizers can spread infectious particles. The initial dose of SABA is two puffs of salbutamol (100 mcg per puff) or equivalent, except in acute, severe asthma when six puffs should be given. When a nebulizer is used, a dose of 2.5 mg salbutamol solution is recommended, and infection control procedures should be followed. The frequency of dosing depends on the response observed over 1–2 hours (see below).

For children with moderate-severe exacerbations and a poor response to initial SABA, nebulized ipratropium bromide may be added every 20 minutes for 1 hour only.
Magnesium sulfate

The role of magnesium sulfate is not established for children 5 years and younger, because there are few studies in this age group. Nebulized isotonic magnesium sulfate may be considered as an adjuvant to standard treatment with nebulized salbutamol and ipratropium in the first hour of treatment for children ≥2 years old with acute severe asthma (e.g., oxygen saturation <92%, Box 6-10, p.201), particularly those with symptoms lasting <6 hours. Intravenous magnesium sulfate in a single dose of 40–50 mg/kg (maximum 2 g) by slow infusion (20–60 minutes) has also been used.

Assessment of response and additional bronchodilator treatment

Children with a severe asthma exacerbation must be observed for at least 1 hour after initiation of treatment, at which time further treatment can be planned:

- **If symptoms persist after initial bronchodilator**: a further 2–6 puffs of salbutamol (depending on severity) may be given 20 minutes after the first dose and repeated at 20-minute intervals for an hour. Consider adding 1–2 puffs of ipratropium. Failure to respond at 1 hour, or earlier deterioration, should prompt urgent admission to hospital, addition of nebulized ipratropium, and a short course of oral corticosteroids (Evidence D).

- **If symptoms have improved by 1 hour but recur within 3–4 hours**: the child may be given more frequent doses of bronchodilator (2–3 puffs each hour), and oral corticosteroids should be given. The child may need to remain in the emergency department, or, if at home, should be observed by the family/carer and have ready access to emergency care. Children who fail to respond to 10 puffs of inhaled SABA within a 3–4 hour period should be referred immediately to hospital (Evidence D).

- **If symptoms resolve rapidly after initial bronchodilator and do not recur for 1–2 hours**: no further treatment may be required. Further SABA may be given as needed up to every 3–4 hours (up to a total of 10 puffs/24 hours). If symptoms persist beyond 1 day, other treatments including inhaled and/or oral corticosteroids are indicated (Evidence D), as outlined below.

Additional treatment

When treatment in addition to SABA is required for an exacerbation, the options available for children aged 5 years and under include ICS, a short course of oral corticosteroid, and/or LTRA (see p.197). However, the clinical benefit of these interventions – particularly on endpoints such as hospitalizations and longer-term outcomes – has not been impressive. Parents/caregivers should be informed about the potential for neuropsychiatric adverse effects associated with LTRA.

Maintain current controller treatment (if prescribed)

Children who have been prescribed maintenance therapy with ICS, LTRA or both should continue to take the prescribed dose during and after an exacerbation (Evidence D). As above, parents/caregivers should be informed about the potential neuropsychiatric adverse effects associated with LTRA.

Inhaled corticosteroids

For children not previously on ICS, an initial dose of ICS twice the low daily dose indicated in Box 11-3 (p.191) may be given and continued for a few weeks or months (Evidence D). Some studies have used high-dose ICS (1600 mcg/day, preferably divided into four doses over the day and given for 5–10 days) as this may reduce the need for OCS. Addition of ICS to standard care (including OCS) does not reduce risk of hospitalization but reduces length of stay and acute asthma scores in children in the emergency department. However, the potential for side-effects with high-dose ICS should be considered, especially if used repeatedly, and the child should be monitored closely. For those children already on ICS, doubling the dose was not effective in a small study of mild-moderate exacerbations in children aged 6–14 years, nor was quintupling the dose in children aged 5–11 years with good adherence. This approach should be reserved mainly for individual cases, and should always involve regular follow-up and monitoring of adverse effects (Evidence D).
Oral corticosteroids

For children with severe exacerbations, a dose of OCS equivalent to prednisolone 1–2 mg/kg/day, with a maximum of 20 mg/day for children under 2 years of age and 30 mg/day for children aged 2–5 years, is currently recommended (Evidence A), although several studies have failed to show any benefits when given earlier (e.g., by parents or caregivers) during periods of worsening wheeze managed in an outpatient setting (Evidence D). A meta-analysis demonstrated a reduced risk of hospitalization when oral corticosteroids were administered in the emergency department, but no clear benefit in risk of hospitalization when given in the outpatient setting. A course of 3–5 days is sufficient in most children of this age, and can be stopped without tapering (Evidence D), but the child must be reviewed after discharge (as below) to confirm they are recovering.

In children discharged from the emergency department, an intramuscular corticosteroid may be an alternative to a course of OCS for preventing relapse, but the risk of long-term adverse effects must be considered. There is insufficient evidence to recommend intramuscular over oral corticosteroids.

Regardless of treatment, the severity of the child’s symptoms must be carefully monitored. The sooner therapy is started in relation to the onset of symptoms, the more likely it is that the impending exacerbation may be clinically attenuated or prevented.

DISCHARGE AND FOLLOW-UP AFTER AN EXACERBATION

Before discharge, the condition of the child should be stable (e.g., out of bed and able to eat and drink without problems). Children who have recently had an asthma exacerbation are at risk of further exacerbations and require follow up. The purpose is to ensure complete recovery, to establish the cause of the exacerbation, and, when necessary, to establish appropriate maintenance treatment and adherence (Evidence D).

Prior to discharge from the emergency department or hospital, family/carers should receive the following advice and information (all are Evidence D):

- Instruction on recognition of signs of recurrence and worsening of asthma. The factors that precipitated the exacerbation should be identified, and strategies for future avoidance of these factors implemented.
- A written, individualized action plan, including details of accessible emergency services
- Careful review of inhaler technique
- SABAs should be used on an as-needed basis to avoid masking worsening asthma, but the daily requirement should be recorded to ensure it is being decreased over time to pre-exacerbation levels.
- Confirm that ICS has been initiated where appropriate (at twice the low initial dose in Box 11-3 (p.191) for the first month after discharge, then adjusted as needed) or continued, for those previously prescribed controller medication.
- A supply of SABA and, where applicable, the remainder of the course of oral corticosteroid, ICS or LTRA
- A follow-up appointment within 1–2 days and another within 1–2 months, depending on the clinical, social and practical context of the exacerbation.
13. Primary prevention of asthma

KEY POINTS

The development and persistence of asthma are driven by gene–environment interactions. For children, a ‘window of opportunity’ to prevent asthma exists in utero and in early life, but intervention studies are limited.

With regard to allergen avoidance strategies aimed at preventing asthma in children:

• Strategies directed at a single allergen have not been effective in reducing the incidence of asthma
• Multifaceted strategies may be effective, but the essential components have not been identified.

Current recommendations for preventing asthma in children, based on high-quality evidence or consensus are:

• Avoid exposure to environmental tobacco smoke during pregnancy and the first year of life.
• Encourage vaginal delivery where possible.
• Where possible, avoid use of broad-spectrum antibiotics during the first year of life.

Breast-feeding is advised, not for prevention of allergy and asthma, but for its other positive health benefits.

In patients with adult-onset asthma, always ask about occupational or domestic exposures, as these exposures may explain 5–20% of new cases of asthma.

In adults and adolescents, the early identification and elimination of occupational sensitizers and the removal of sensitized patients from any further exposure are important aspects of the prevention and management of occupational asthma.

FACTORS ASSOCIATED WITH INCREASED OR DECREASED RISK OF ASTHMA IN CHILDREN

Asthma is a heterogeneous disease whose inception and persistence are driven by gene–environment interactions that are not yet fully understood. The most important of these interactions may occur in early life and even in utero. There is consensus that a ‘window of opportunity’ exists during pregnancy and early in life when environmental factors may influence asthma development. Multiple environmental factors, both biological and sociological, may be important in the development of asthma. Data from studies investigating the role of environmental risk factors for the development of asthma support further research on prevention strategies focusing on nutrition, allergens (both inhaled and ingested), pollutants (particularly environmental tobacco smoke), microbes, and psychosocial factors.

‘Primary prevention’ refers to preventing the onset of disease.

Nutrition of mother and baby

Maternal diet

A large body of research investigating the development of allergy and asthma in children has focused on the mother’s diet during pregnancy. Current evidence does not clearly demonstrate that ingestion of any specific foods during pregnancy increases the risk for asthma. However, a study of a pre-birth cohort observed that maternal intake of foods commonly considered allergenic (peanut and milk) was associated with a decrease in allergy and asthma in the offspring. Similar data have been shown in a very large Danish National birth cohort, with an association between ingestion of peanuts, tree nuts and/or fish during pregnancy and a decreased risk of asthma in the offspring. Epidemiological studies and randomized controlled trials on maternal dietary intake of fish or long-chain polyunsaturated fatty acids during pregnancy showed no consistent effects on the risk of wheeze, asthma or atopy in the child. Dietary changes during pregnancy are therefore not recommended for prevention of allergies or asthma.
Maternal obesity and weight gain during pregnancy

Data suggest that maternal obesity and weight gain during pregnancy pose an increased risk for asthma in children. A meta-analysis \cite{footnote} showed that maternal obesity in pregnancy was associated with higher odds of ever asthma or wheeze or current asthma or wheeze; each 1 kg/m² increase in maternal body-mass index (BMI) was associated with a 2% to 3% increase in the odd of childhood asthma. High gestational weight gain was associated with higher odds of ever asthma or wheeze. However, no recommendations can be made at present, as unguided weight loss in pregnancy should not be encouraged.

Breastfeeding

Despite the existence of many studies reporting a beneficial effect of breastfeeding on asthma prevention, results are conflicting, \cite{footnote} and caution should be taken in advising families that breastfeeding will prevent asthma. Breastfeeding decreases wheezing episodes in early life; however, it may not prevent development of persistent asthma (Evidence D). Regardless of any effect on development of asthma, breastfeeding should be encouraged for all of its other positive benefits (Evidence A).

Timing of introduction of solids

Beginning in the 1990s, many national pediatric agencies and societies recommended delay of introduction of solid food, especially for children at a high risk for developing allergy. However, meta-analyses have found no evidence that this practice reduces the risk of allergic disease (including asthma) \cite{footnote}. Early introduction of peanuts may prevent peanut allergy in high-risk infants. \cite{footnote}

Dietary supplements for mothers and/or babies

Vitamin D

Intake of vitamin D may be through diet, dietary supplementation or sunlight. A systematic review of cohort, case control and cross-sectional studies concluded that maternal dietary intake of vitamin D, and of vitamin E was associated with lower risk of wheezing illnesses in children. \cite{footnote} This was not confirmed in two randomized controlled trials (RCTs) of vitamin D supplementation in pregnancy, which compared standard-dose with high-dose vitamin D; however, a significant effect was not disproven. \cite{footnote} When the results from these two trials were combined, there was a 25% reduction of risk of asthma/recurrent wheeze at ages 0–3 years. \cite{footnote} The effect was greatest among women who maintained 25(OH) vitamin D levels of at least 30 ng/mL from the time of study entry through delivery, suggesting that sufficient levels of Vitamin D during early pregnancy may be important in decreasing risk for early wheezing episodes, \cite{footnote} although in both trials, no effects of vitamin D supplementation on the development of asthma and recurrent wheeze were evident at the age of 6 years. \cite{footnote} Secondary analysis of the VDAART study \cite{footnote} suggested that earlier supplementation may be more effective in reducing the risk of asthma. \cite{footnote}

Fish oil and long-chain polyunsaturated fatty acids

Systematic reviews of cohort studies about maternal dietary intake of fish or seafood during pregnancy \cite{footnote} and of RCTs on maternal dietary intake of fish or long-chained polyunsaturated fatty acids during pregnancy \cite{footnote} showed no consistent effects on the risk of wheeze, asthma or atopy in the child. One study demonstrated decreased wheeze/asthma in preschool children at high risk for asthma when mothers were given a high-dose fish oil supplement in the third trimester; \cite{footnote} however, ‘fish oil’ is not well defined, and the optimal dosing regimen has not been established.

Probiotics

A meta-analysis provided insufficient evidence to recommend probiotics for the prevention of allergic disease (asthma, rhinitis, eczema or food allergy). \cite{footnote}

Inhalant allergens

Sensitization to indoor, inhaled aeroallergens is generally more important than sensitization to outdoor allergens for the presence of, and/or development of, asthma. While there appears to be a linear relationship between exposure and
sensitization to house dust mite, the relationship for animal allergen appears to be more complex. Some studies have found that exposure to pet allergens is associated with increased risk of sensitization to these allergens, and of asthma and wheezing. By contrast, other studies have demonstrated a decreased risk of developing allergy with exposure to pets. Analyses of data from large populations of school-age children from birth cohorts in Europe have found no association between pets in the homes early in life and higher or lower prevalence of asthma in children. For children at risk of asthma, dampness, visible mold and mold odor in the home environment are associated with increased risk of developing asthma. Overall, there are insufficient data to recommend efforts to either reduce or increase prenatal or early-life exposure to common sensitizing allergens, including pets, for the prevention of allergies and asthma.

Birth cohort studies provide some evidence for consideration. A meta-analysis found that studies of interventions focused on reducing exposure to a single allergen did not significantly affect asthma development, but that multifaceted interventions such as in the Isle of Wight study, the Canadian Asthma Primary Prevention Study, and the Prevention of Asthma in Children study were associated with lower risk of asthma diagnosis in children younger than 5 years. Two multifaceted studies that followed children beyond 5 years of age demonstrated a significant protective effect both before and after the age of 5 years. The Isle of Wight study has shown a continuing positive benefit for early-life intervention through to 18 years of age; however, it remains unclear which components of the intervention contributed to the effects reported, and the precise mechanism of these effects.

Treatment with grass pollen sublingual allergen immunotherapy (SLIT) for 3 years did not reduce the incidence of asthma diagnosis (primary outcome) in a large randomized double-blind placebo-controlled trial in children aged 5–12 years with grass-allergic rhinoconjunctivitis, but asthma symptoms and asthma medication use were reduced. At present, there is insufficient evidence to make a recommendation for SLIT in children with grass allergic rhinoconjunctivitis for the purpose of asthma prevention. More studies are needed.

Pollutants

Maternal smoking during pregnancy is the most direct route of prenatal environmental tobacco smoke exposure. A meta-analysis concluded that prenatal smoking had its strongest effect on young children, whereas postnatal maternal smoking appeared only to affect asthma development in older children. Exposure to outdoor pollutants, such as living near a main road, is associated with increased risk of asthma. A 2019 study suggested that up to 4 million new pediatric asthma cases (13% of the global incidence) may be attributable to exposure to traffic-related air pollution. Prenatal NO2, SO2, and PM10 exposures are associated with an increased risk of asthma in childhood, but it is difficult to separate effects of prenatal and postnatal exposure.

Microbial effects

The ‘hygiene hypothesis’, and the more recently coined ‘microflora hypothesis’ and ‘biodiversity hypothesis’, suggest that human interaction with microbiota may be beneficial in preventing asthma. For example, there is a lower risk of asthma among children raised on farms with exposure to stables and consumption of raw farm milk than among children of non-farmers. The risk of asthma is also reduced in children whose bedrooms have high levels of bacterial-derived lipopolysaccharide endotoxin. Similarly, children in homes with ≥2 dogs or cats are less likely to be allergic than those in homes without dogs or cats. Exposure of an infant to the mother’s vaginal microflora through vaginal delivery may also be beneficial; the prevalence of asthma is higher in children born by cesarean section than those born vaginally. This may relate to differences in the infant gut microbiota according to their mode of delivery.

Respiratory syncytial virus (RSV) infection in infancy is associated with recurrent wheeze at age 5 years. Preventative treatment of premature infants with monthly injections of palivizumab, a monoclonal antibody prescribed for prophylaxis of severe RSV infection, was associated with a reduction in recurrent wheezing in the first year of life. However, although the risk of parent-reported asthma with infrequent wheeze was reduced at 6 years, there was no impact on doctor-diagnosed asthma or lung function. The long-term effect of RSV-specific monoclonal antibodies in the prevention of asthma remains uncertain. Studies of RSV vaccination of pregnant women and healthy infants suggest a reduction...
in RSV infection requiring medical attention in the first year of life. However, it has not yet been established whether these interventions will lead to a reduced risk of further wheezing episodes, or will prevent development of asthma.

Medications and other factors

Antibiotic use during pregnancy and in infants and toddlers has been associated with the development of asthma later in life, although not all studies have shown this association. Intake of the analgesic, paracetamol (acetaminophen), may be associated with an increased risk of asthma in both children and adults, although exposure during infancy may be confounded by use of paracetamol for respiratory tract infections. Frequent use of paracetamol by pregnant women has been associated with increased risk of asthma in their children.

Maternal folic acid supplementation during pregnancy at higher than recommended doses may be associated with a small increase in the risk of childhood asthma in offspring. However, this small risk is far outweighed by the well-established role of folate supplementation in reducing the risk of clinically important neural tube defects. Women should therefore be advised and encouraged to follow recommendations by local health authorities on folic acid supplementation during pregnancy.

There is no evidence that vaccinations increase a child’s risk of developing asthma.

Psychosocial factors

The social environment to which children are exposed may also contribute to the development and severity of asthma. Maternal distress during pregnancy or during the child’s early years has been associated with an increased risk of the child developing asthma.

Obesity

A meta-analysis of 18 studies found that being either overweight or obese was a risk factor for childhood asthma and wheeze, particularly in girls. In adults, there is evidence suggesting that obesity affects the risk of asthma, but that asthma does not affect the risk of obesity.

ADVICE ABOUT PRIMARY PREVENTION OF ASTHMA

Based on the results of cohort and observational studies, and a GRADE-based analysis conducted for the Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines, parents/caregivers enquiring about how to reduce the risk of their children developing asthma can be provided with the advice summarized in Box 13-1.

Possibly the most important factor is the need to provide a positive, supportive environment for discussion that decreases stress, and which encourages families to make choices with which they feel comfortable.

Box 13-1. Advice about primary prevention of asthma in children 5 years and younger

Parents/caregivers enquiring about how to reduce the risk of their child developing asthma can be given the following advice:

- Children should not be exposed to environmental tobacco smoke during pregnancy or after birth.
- Identification and correction of Vitamin D insufficiency in women with asthma who are pregnant, or planning pregnancy, may reduce the risk of early life wheezing episodes.
- Where possible, vaginal delivery should be encouraged.
- Where possible, the use of broad-spectrum antibiotics during the first year of life should be discouraged.
- Breastfeeding is advised, not for prevention of allergy or asthma, but for its other positive health benefits.
PREVENTION OF OCCUPATIONAL ASTHMA IN ADULTS

An estimated 5–20% of new cases of adult-onset asthma can be attributed to occupational exposure. Asthma may be induced or (more commonly) aggravated by exposure to allergens or other sensitizing agents at work, or sometimes from a single, massive exposure. Occupational rhinitis may precede asthma by up to a year. Early diagnosis is essential, as persistent exposure is associated with worse outcomes.

Asthma acquired in the workplace is frequently missed. The occurrence of adult-onset asthma requires a systematic inquiry about work history and exposures, including hobbies. An essential screening question is to ask patients whether their symptoms improve when they are away from work (weekends or vacation). It is important to confirm the diagnosis of occupational asthma objectively as it may lead to the patient changing their occupation, which may have legal and socioeconomic implications. Specialist referral is usually necessary, and frequent PEF monitoring at and away from work is often used to help confirm the diagnosis.

The early identification and elimination of occupational sensitizers and the removal of sensitized patients from any further exposure are important aspects of the management of occupational asthma (Evidence A). Attempts to reduce occupational exposure have been successful, especially in industrial settings. For example, cost-effective minimization of latex sensitization can be achieved by using non-powdered low-allergen gloves instead of powdered latex gloves.

Patients with suspected or confirmed occupational asthma should be referred for expert assessment and advice, if this is available, because of the economic and legal implications of the diagnosis (Evidence A).

There is more information about occupational asthma in specific guidelines.
14. Implementing asthma management strategies into health systems

KEY POINTS

- To improve asthma care and patient outcomes, evidence-based recommendations must not only be developed, but also disseminated and implemented at a national and local level, and integrated into clinical practice.
- Recommendations for implementing asthma care strategies are based on many successful programs worldwide.
- Implementation requires an evidence-based strategy involving professional groups and stakeholders, and should take into account local cultural and socioeconomic conditions.
- Cost-effectiveness of implementation programs should be assessed so a decision can be made to pursue or modify them.
- Local adaptation and implementation of asthma care strategies is aided by the use of tools developed for this purpose.

INTRODUCTION

Due to the exponential increase in medical research publications, practical syntheses are needed to guide policy makers and healthcare professionals in delivering evidence-based care. When asthma care is consistent with evidence-based recommendations, outcomes improve.219,931,932 This Strategy Report is a resource document for healthcare professionals, intended to set out the main goals of asthma treatment and the actions required to ensure their fulfilment, as well as to facilitate the achievement of standards for quality asthma care. These objectives can only be realized through local implementation in each country, region and healthcare organization.

The use of rigorous methodologies such as GRADE9 for the development of clinical practice recommendations, and of ADAPTE933 and similar approaches for assisting the adaptation of recommendations for local country and regional conditions, has assisted in reducing biased opinion as the basis for asthma programs worldwide. Adaptation of clinical practice recommendations to local conditions using the GRADE method is costly, and often requires expertise that is not available locally; in addition, regular revision is required to remain abreast of developments, including drug availability and new evidence, and this is not easily achieved.934 Further, there is generally very limited high quality evidence addressing the many decision nodes in comprehensive clinical practice guidelines, particularly in developing countries.

The GINA annual report is not a formal guideline but an evidence-based strategy, updated yearly from a review of the evidence published in the last 18 months. Each year’s report is an update on the entire strategy, so it does not use individual PICOT questions and GRADE, but the review process includes systematic reviews using these methodologies. (See section on methodology at www.ginasthma.org). As with other evidence-based clinical recommendations, the GINA strategy must be adapted to the local context for implementation in clinical practice.

ADAPTING AND IMPLEMENTING ASTHMA CLINICAL PRACTICE GUIDELINES

Implementation of asthma management strategies may be carried out at a national, regional or local level.936 Ideally, implementation should be a multidisciplinary effort involving many stakeholders, and using cost-effective methods of knowledge translation.935-937 Each implementation initiative needs to consider the nature of the local health system and its resources, including human resources, infrastructure, and available treatments (Box 14-1). Moreover, goals and implementation strategies will need to vary from country to country and within countries, based on economics, culture and the physical and social environment. Priority should be given to high-impact interventions.

Specific steps need to be followed before clinical practice recommendations can be embedded into local clinical practice and become the standard of care, particularly in low resource settings. The individual steps are summarized in Box 14-2.
Box 14-1. Approach to implementation of the Global Strategy for Asthma Management and Prevention

1. Develop a multidisciplinary working group.
2. Assess the current status of asthma care delivery, outcomes e.g., exacerbations, admissions, deaths, care gaps and current needs.
3. Select the material to be implemented, agree on main goals, identify key recommendations for diagnosis and treatment, and adapt them to the local context or environment.
4. Identify barriers to, and facilitators of, implementation.
5. Select an implementation framework and its component strategies.
6. Develop a step-by-step implementation plan:
 - Select target populations and evaluable outcomes, and specify data coding requirements (if relevant).
 - Identify local resources to support implementation.
 - Set timelines.
 - Distribute tasks to members.
 - Evaluate outcomes.
7. Continually review progress and results to determine if the strategy requires modification.

Box 14-2. Essential elements required to implement a health-related strategy

Steps in implementing an asthma strategy into a health system

1. Develop a multidisciplinary working group.
2. Assess the current status of asthma care delivery, outcomes e.g., exacerbations, admissions, deaths, care gaps and current needs.
3. Select the material to be implemented, agree on main goals, identify key recommendations for diagnosis and treatment, and adapt them to the local context or environment.
4. Identify barriers to, and facilitators of, implementation.
5. Select an implementation framework and its component strategies.
6. Develop a step-by-step implementation plan:
 - Select target populations and evaluable outcomes, and specify data coding requirements (if relevant).
 - Identify local resources to support implementation.
 - Set timelines.
 - Distribute tasks to members.
 - Evaluate outcomes.
7. Continually review progress and results to determine if the strategy requires modification.
Barriers and facilitators

Many barriers to, and facilitators of, implementation procedures have been described. Some of the barriers to implementation of evidence-based asthma management relate to the delivery of care, while others occur at individual or community level (see Box 14-3). Cultural and economic barriers can particularly affect the application of recommendations.

Box 14-3. Examples of barriers to the implementation of evidence-based recommendations

<table>
<thead>
<tr>
<th>Healthcare providers</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Insufficient knowledge of recommendations</td>
<td>• Low health literacy</td>
</tr>
<tr>
<td>• Lack of agreement with recommendations or expectation that they will be effective</td>
<td>• Insufficient understanding of asthma and its management</td>
</tr>
<tr>
<td>• Resistance to change</td>
<td>• Lack of agreement with recommendations</td>
</tr>
<tr>
<td>• External barriers (organizational, health policies, financial constraints)</td>
<td>• Cultural and economic barriers</td>
</tr>
<tr>
<td>• Lack of time and resources</td>
<td>• Peer influence</td>
</tr>
<tr>
<td>• Medico-legal issues</td>
<td>• Attitudes, beliefs, preferences, fears and misconceptions</td>
</tr>
<tr>
<td>• Lack of accurate coding (diagnosis, exacerbations, emergency department and hospital admissions, and deaths)</td>
<td></td>
</tr>
</tbody>
</table>

Examples of high-impact implementation interventions

Ideally, interventions should be applied at the level of both the patient and the healthcare provider and, where relevant, the health system. Studies of the most effective means of medical education show that it may be difficult to change clinical practice. Examples of highly effective implementation interventions are shown in Box 14-4.

Box 14-4. Examples of high-impact implementation interventions in asthma management

- Free inhaled corticosteroids (ICS) for patients with a recent hospital admission and/or severe asthma
- Early treatment with ICS, guided self-management, reduction in exposure to tobacco smoke, improved access to asthma education
- Checklist memory aid for primary care, prompting assessment of asthma control and treatment strategies
- Use of individualized written asthma action plans as part of self-management education
- An evidence-based care process model for acute and chronic pediatric asthma management, implemented at multiple hospitals

Evaluation of the implementation process

An important part of the implementation process is to establish a means of evaluating the effectiveness of the program and any improvements in quality of care. Evaluation involves surveillance of traditional epidemiological parameters, such as morbidity and mortality, as well as specific audits of both process and outcome within different sectors of the healthcare system. Each country should determine its own minimum sets of data to audit health outcomes.

How can GINA help with implementation?

The GINA Strategy Report provides an annually updated summary of evidence relevant to asthma diagnosis, management and prevention that may be used in the formulation and adaptation of local guidelines; where evidence is lacking, the report provides approaches for consideration. The GINA Dissemination Group assists in the dissemination of the recommendations in the Strategy Report. GINA can be contacted via the website (www.ginasthma.org/contact-us).
Glossary of asthma medication classes

For more details about medications, see full 2023 GINA report (www.ginasthma.org) and Product Information from manufacturers. Always check local eligibility criteria.

MEDICATIONS for MAINTENANCE TREATMENT

<table>
<thead>
<tr>
<th>Inhaled corticosteroids (ICS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medications</td>
</tr>
<tr>
<td>Delivery</td>
</tr>
<tr>
<td>Action and use</td>
</tr>
<tr>
<td>Adverse effects</td>
</tr>
</tbody>
</table>

ICS in combination with a long-acting beta2 agonist bronchodilator (ICS-LABA)

Medications	Beclometasone-formoterol, budesonide-formoterol, fluticasone furoate-vilanterol, fluticasone propionate formoterol, fluticasone propionate-salmeterol, mometasone-formoterol and mometasone-indacaterol.
Delivery	pMDI or DPI
Action and use	When a low-dose of ICS alone fails to achieve good control of asthma, the addition of LABA to maintenance ICS improves symptoms, lung function and reduces exacerbations in more patients, more rapidly, than doubling the dose of ICS. Two regimens are available: low-dose combination beclometasone or budesonide with low-dose formoterol for both maintenance-and-reliever treatment (MART, GINA Track 1), and maintenance ICS-LABA with SABA or ICS-SABA as reliever (Track 2). MART with low-dose ICS-formoterol reliever is preferred as it reduces exacerbations compared with conventional maintenance therapy with SABA as reliever, and is a simpler regimen. For as-needed-only use of ICS-formoterol in mild asthma, see section on anti-inflammatory relievers below; and for ICS-LABA-LAMA, see section on add-on medications. See box 4-2, p.71 for low, medium and high doses of ICS in combination with LABA. See Box 4-8, p.84 for medications and doses for anti-inflammatory reliever therapy with ICS-formoterol.
Adverse effects	The LABA component may be associated with tachycardia, headache or cramps. LABA is safe for asthma when used in combination with ICS. LABA or LAMA should not be used without ICS in asthma (or in patients with asthma+COPD) due to increased risk of serious adverse outcomes. Concomitant treatment with cytochrome P450 inhibitors such as ketoconazole, ritonavir, itraconazole, erythromycin and clarithromycin may increase the risk of ICS adverse
effects such as adrenal suppression.

Leukotriene modifiers *(leukotriene receptor antagonists, LTRA)*

<table>
<thead>
<tr>
<th>Medications</th>
<th>Montelukast, pranlukast, zafirlukast, zileuton.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery</td>
<td>Tablets</td>
</tr>
<tr>
<td>Action and use</td>
<td>Target one part of the inflammatory pathway in asthma. Sometimes used as an option for maintenance therapy, mainly only in children. When used alone: less effective than low-dose ICS. When added to ICS: less effective than ICS-LABA.</td>
</tr>
<tr>
<td>Adverse effects</td>
<td>Few in placebo-controlled studies except elevated liver function tests with zileuton and zafirlukast. There are concerns in adults and children about risk of serious behavioral and mood changes, including suicidal ideation, associated with montelukast; this should be discussed with patients/parents/caregivers.</td>
</tr>
</tbody>
</table>

ADD-ON MAINTENANCE MEDICATIONS

Long-acting muscarinic antagonists (LAMA) *(check your local eligibility criteria)*

<table>
<thead>
<tr>
<th>Medications</th>
<th>Tiotropium, ≥6 years, by mist inhaler, added to separate ICS-LABA. Combination ICS-LABA-LAMA inhalers for adults ≥18 years: beclometasone-formoterol-glycopyrronium; fluticasone furoate-vilanterol-umeclidinium; mometasone-indacaterol-glycopyrronium.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery</td>
<td>pMDI or DPI or mist inhaler</td>
</tr>
<tr>
<td>Action and use</td>
<td>An add-on option at Step 5 (or at Step 4, non-preferred because of weaker evidence for benefit) in combination or separate inhalers for patients with uncontrolled asthma despite ICS-LABA. Modestly improves lung function but not symptoms or quality of life; small reduction in exacerbations. For patients with exacerbations, ensure that ICS is increased to at least medium dose before considering need for add-on LAMA.</td>
</tr>
<tr>
<td>Adverse effects</td>
<td>Uncommon, but include dry mouth, urinary retention.</td>
</tr>
</tbody>
</table>

Anti-IgE *(check your local eligibility criteria)*

<table>
<thead>
<tr>
<th>Medications</th>
<th>Omalizumab, ≥6 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery</td>
<td>Syringe or pen for subcutaneous injection</td>
</tr>
<tr>
<td>Action and use</td>
<td>An add-on option for patients with severe allergic asthma uncontrolled on high-dose ICS-LABA. May also be indicated for nasal polyps and chronic spontaneous (idiopathic) urticaria. Self-administration may be an option.</td>
</tr>
<tr>
<td>Adverse effects</td>
<td>Reactions at the site of injection are common but minor. Anaphylaxis is rare.</td>
</tr>
</tbody>
</table>

Anti-IL5 and anti-IL5Rα *(check your local eligibility criteria)*

<table>
<thead>
<tr>
<th>Medications</th>
<th>Anti-IL5: mepolizumab (≥6 years, SC injection) or reslizumab (≥18 years, intravenous infusion). Anti-IL5 receptor benralizumab (≥12 years, SC injection).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery</td>
<td>Depends on the specific medication, as above</td>
</tr>
<tr>
<td>Action and use</td>
<td>Add-on options for patients with severe eosinophilic asthma uncontrolled on high-dose ICS-</td>
</tr>
</tbody>
</table>
LABA. Maintenance OCS dose can be significantly reduced with benralizumab and mepolizumab. Mepolizumab may also be indicated for eosinophilic granulomatosis with polyangiitis (EGPA), hypereosinophilic syndrome or chronic rhinosinusitis with nasal polyposis. For mepolizumab and benralizumab, self-administration may be an option.

Adverse effects
Headache, and reactions at injection site are common but minor.

Anti-IL4Ra (check your local eligibility criteria)

Medications
Anti-interleukin 4 receptor alpha: dupilumab, ≥6 years

Delivery
Syringe or pen for subcutaneous injection

Action and use
An add-on option for patients with severe eosinophilic or Type 2 asthma uncontrolled on high-dose ICS-LABA, or patients requiring maintenance OCS. Not advised for patients with current or historical blood eosinophils ≥1500/mL. May also be indicated for treatment of skin conditions including moderate-severe atopic dermatitis, chronic rhinosinusitis with nasal polyps, and eosinophilic esophagitis. Self-administration may be an option.

Adverse effects
Reactions at injection site are common but minor. Transient blood eosinophilia occurs in 4–13% of patients. Rarely, cases of eosinophilic granulomatosis with polyangiitis (EGPA) may be unmasked following reduction/cessation of OCS treatment on dupilumab.

Anti-TSLP (check your local eligibility criteria)

Medications
Tezepelumab, SC injection, ≥12 years

Delivery
Syringe or pen for subcutaneous injection

Action and use
An add-on option for patients with severe asthma uncontrolled on high-dose ICS-LABA. In patients taking maintenance OCS, no significant reduction in OCS dose compared with placebo.

Adverse effects
Injection-site reactions; anaphylaxis is rare; adverse events generally similar between active and placebo groups.

Systemic corticosteroids

Medications
include prednisone, prednisolone, methylprednisolone, hydrocortisone tablets, dexamethasone.

Delivery
Given by tablets or suspension or by IM or IV injection

Action and use
Short-term treatment (usually 5–7 days in adults) is important in the treatment of severe acute exacerbations, with main effects seen after 4–6 hours. For acute severe exacerbations, oral corticosteroid (OCS) therapy is preferred to IM or IV therapy and is effective in preventing short-term relapse. Tapering is required if OCS given for more than 2 weeks. Patients should be reviewed after any exacerbation, to optimize their inhaled treatment to reduce the risk of future exacerbations requiring OCS.

As a last resort, long-term treatment with OCS may be required for some patients with severe asthma, but serious side-effects are problematic. Patients for whom this is considered should be referred for specialist review if available, to have treatment optimized and phenotype assessed.
Adverse effects
Short courses: adverse effects include sepsis, thromboembolism, sleep disturbance, reflux, appetite increase, hyperglycemia, mood changes. Even 4–5 lifetime courses increase cumulative risk of long-term adverse effects e.g., diabetes, osteoporosis, cataract, glaucoma, heart failure.
Maintenance use: consider only as last resort, because of significant adverse effects e.g., cataract, glaucoma, hypertension, diabetes, adrenal suppression osteoporosis. Assess for these risks and treat appropriately.

ANTI-INFLAMMATORY RELIEVER MEDICATIONS

Low-dose combination ICS-formoterol

<table>
<thead>
<tr>
<th>Medications</th>
<th>Beclometasone-formoterol or budesonide-formoterol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery</td>
<td>pMDI or DPI</td>
</tr>
</tbody>
</table>
| Action and use | This is the anti-inflammatory reliever inhaler for GINA Track 1, for patients prescribed maintenance-and-reliever therapy (MART) with maintenance ICS-formoterol in Steps 3-5, or for patients prescribed as-needed-only ICS-formoterol in Steps 1-2. In both settings, it reduces the risk of severe exacerbations compared with using SABA as reliever, with similar symptom control. In patients with mild asthma, as-needed-only ICS-formoterol reduces emergency visits/hospitalizations by 65% compared with SABA alone, and by 37% compared with daily ICS plus as-needed SABA. See Box 4-8, p.84 for details of medications and doses for AIR-only and MART.
| | Low-dose ICS-formoterol can be taken before exercise to reduce exercise-induced bronchoconstriction, and it can be taken before or during allergen exposure to reduce allergic responses. |
| Recommended maximum doses in any day | For adults and adolescents, the maximum total number of inhalations in a single day (maintenance plus reliever doses) for budesonide-formoterol gives 72 mcg metered dose (delivered dose 54 mcg) of the formoterol component. Since the safety and efficacy of budesonide-formoterol up to this maximum total daily use has been established from large studies (>50,000 patients), GINA suggests that the same maximum total daily dose should also apply for beclometasone-formoterol.
| | For children 6–11 years prescribed MART with budesonide-formoterol, the maximum total dose recommended in a single day gives 48 mcg metered dose (delivered dose 36 mcg) of the formoterol component. |
| | See Box 4-7, p.78 for details of medications and doses for different age-groups. |
| Adverse effects | As for ICS-formoterol above. |

Low-dose combination ICS-SABA

<table>
<thead>
<tr>
<th>Medications</th>
<th>Budesonide-salbutamol (also described as albuterol-budesonide); beclometasone-salbutamol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery</td>
<td>pMDI or DPI</td>
</tr>
<tr>
<td>Action and use</td>
<td>Anti-inflammatory reliever option (instead of SABA) for GINA Track 2. Budesonide-salbutamol 100/100 mcg (delivered dose 80/90 mcg) taken 2 inhalations as needed for symptom relief on top of maintenance ICS or ICS-LABA reduced the risk of severe exacerbations in adults compared with SABA reliever; most of the benefit was seen in Step 3. ICS-SABA cannot be used for maintenance-and-reliever therapy. No evidence for as-needed-only use of budesonide-salbutamol in Steps 1–2.</td>
</tr>
</tbody>
</table>
Recommended maximum doses in any day:

- Maximum 6 doses, each of 2 inhalations, in any day.

Adverse effects

- As for ICS and SABA.

SHORT-ACTING BRONCHODILATOR RELIEVER MEDICATIONS

Short-acting inhaled beta\textsubscript{2} agonist bronchodilators (SABA)

<table>
<thead>
<tr>
<th>Medications</th>
<th>e.g., salbutamol (albuterol), terbutaline.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery</td>
<td>Administered by pMDI, DPI or, rarely, as solution for nebulization or injection</td>
</tr>
<tr>
<td>Action and use</td>
<td>Inhaled SABAs provide quick relief of asthma symptoms and bronchoconstriction, and for pre-treatment before exercise. SABAs should be used only as-needed (not regularly) and at the lowest dose and frequency required. SABA-only treatment is not recommended because of the risk of severe exacerbations and asthma-related death. Currently, inhaled SABAs are the most commonly used bronchodilator for acute exacerbations requiring urgent primary care visit or ED presentation.</td>
</tr>
<tr>
<td>Adverse effects</td>
<td>Tremor and tachycardia are commonly reported with initial use of SABA. Tolerance develops rapidly with even 1–2 weeks of regular use, with increased airway hyperresponsiveness, reduced bronchodilator effect, and increased airway inflammation. Excess use, or poor response indicate poor asthma control and risk of exacerbations. Dispensing of 3 or more 200-dose canisters per year is associated with increased risk of exacerbations, and dispensing of 12 or more canisters per year is associated with markedly increased risk of death.</td>
</tr>
</tbody>
</table>

Short-acting antimuscarinics (anticholinergics)

<table>
<thead>
<tr>
<th>Medications</th>
<th>e.g., ipratropium bromide, oxitropium bromide. May be in combination with SABA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery</td>
<td>pMDI or DPI.</td>
</tr>
<tr>
<td>Action and use</td>
<td>As-needed use: ipratropium is a less effective reliever medication than SABA, with slower onset of action. Short-term use in severe acute asthma, where adding ipratropium to SABA reduces the risk of hospital admission.</td>
</tr>
<tr>
<td>Adverse effects</td>
<td>Dryness of the mouth or a bitter taste.</td>
</tr>
</tbody>
</table>
References

168. Reddel HK, Marks GB, Jenkins CR. When can personal best peak flow be determined for asthma action plans? Thorax 2004; 59: 922-924.

238. Crompton G. A brief history of inhaled asthma therapy over the last fifty years. Prim Care Respir J 2006; 15: 326-331.

347. Chauhan BF, Ducharme FM. Anti-leukotriene agents compared to inhaled corticosteroids in the management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst Rev 2012; 5: CD002314.

408. Adams NP, Jones PW. The dose-response characteristics of inhaled corticosteroids when used to treat asthma: an overview of Cochrane systematic reviews. Respir Med 2006; 100: 1297-1306.

443. Klimek L, Fox GC, Thum-Oltmer S. SCIT with a high-dose house dust mite allergoid is well tolerated: safety data from pooled clinical trials and more than 10 years of daily practice analyzed in different subgroups. Allergo J Int 2018; 27: 131-139.

Basheti IA, Obeidat NM, Reddel HK. Effect of novel inhaler technique reminder labels on the retention of inhaler technique skills in asthma: a single-blind randomized controlled trial. NPJ Prim Care Respir Med 2017; 27: 9.

540. Goodwin RD, Jacobi F, Thefeld W. Mental disorders and asthma in the community. Arch Gen Psychiatry 2003; 60: 1125-1130.

578. Carlsen KH, Anderson SD, Bjermer L, et al. Treatment of exercise-induced asthma, respiratory and allergic disorders in sports and the relationship to doping: Part II of the report from the Joint Task Force of European Respiratory Society (ERS) and European Academy of Allergy and Clinical Immunology (EAACI) in cooperation with GA(2)LEN. Allergy 2008; 63: 492-505.

636. Gibson PG, Simpson JL. The overlap syndrome of asthma and COPD: what are its features and how important is it? Thorax 2009; 64: 728-735.

656. Foster JM, McDonald VM, Guo M, et al. "I have lost in every facet of my life": the hidden burden of severe asthma. Eur Respir J 2017; 50: 1700765.

Busse WW. Are peripheral blood eosinophil counts a guideline for omalizumab treatment? STELLAIR says no! Eur Respir J 2018; 51: 1800730.

748. Leatherman J. Mechanical ventilation for severe asthma. Chest 2015; 147: 1671-1680.

892. Ownby DR, Johnson CC, Peterson EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA 2002; 288: 963-972.

